Answer:
I = 4.28 [amp]
Explanation:
To solve this type of problems we must have knowledge of the law of ohm, which tells us that the voltage is equal to the product of resistance by current.
Initial data:
v = 1.5 [volt]
R = 0.35 [ohms]
v = I * R
therefore:
I = 1.5 / 0.35
I = 4.28 [amp]
(3) The frictional force exerted by the floor on the box
Answer: The velocity with which the sand throw is 24.2 m/s.
Explanation:
Explanation:
acceleration due to gravity, a = 3.9 m/s2
height, h = 75 m
final velocity, v = 0
Let the initial velocity at the time of throw is u.
Use third equation of motion
The velocity with which the sand throw is 24.2 m/s.
If this case could ever happen, the speed would follow from this formula:

with f the frequency and lambda the wavelength. We are give a wavelength of 10m. The frequencies of the visible light can range between 400 to about 790 Terahertz, so let us pick a middle point of 600 THz ("green-ish") as a "representative."

The speed of such a wave would have to be 6e+15 m/s (which would be 7 orders of magnitude higher than the universal speed of light constant)
The wavelengths of radio waves are much "Longer" than the wavelength of microwaves therefore, radio waves carry much "Lower" <span>energy than a microwave.
Hope this helps!</span>