Answer:
The correct answer will be "0.25 sec".
Explanation:
The graph of the given question is attached below.
According to the graph of the question,
Time,
T = 1 sec
For the upward velocity,
⇒ 
By putting the value, we get
⇒ 
⇒ 
Answer:
<em>The canyon is approximately 314 meters away</em>
Explanation:
<u>Speed of Sound</u>
If we emit sounds in an open space where a large obstacle (like a mountain) is expected to return the sounds, then it will travel forth and back at a given speed for a certain time. We can assume the speed of sound is constant, so we could know the approximate distance of the mountain (or canyon in our case) by the known formula.

Where
is the speed of sound and t is half the time we hear our echo.
The speed of sound in m/s can be calculated from the approximate formula in terms of the temperature T in degrees Celsius

We have
, so


Let's compute x, for t=1.8/2=0.9 seconds


The canyon is approximately 314 meters away
Answer:
4.5 W
Explanation:
Applying,
P = V²/(R₁+R₂).................. Equation 1
Where P = Power, V = Voltage, R₁ and R₂ = values of the two resistor.
From the question,
Given: V = 9.00 V, R₁ = 7.00 Ω, R₂ = 11.00 Ω
Substitute these values into equation 1
P = 9²/(7+11)
P = 81/(18)
P = 4.5 Watt.
Hence the power dessipated by the two resistors is 4.5 watt
In an elastic collision, no energy is lost. The energy would be the same as before the collision.