Answer:
air resistance, gravitational force
Answer:
896 kJ
Explanation:
KInetic Energy = 1/2 m v^2
= 1/2 (1120)(40^2) = 896 000 J or 896 kJ
Answer:
1. all of them
2. cork and wax
3. iron, lead, and aluminum
4. none of them
Explanation:
1.Which material will displace a volume of water? all of them
When an object is introduced into a container with a volume of water, a volume of liquid equal to the volume of the object is displaced
2.Which material will displace a volume of water less than its own volume?
cork and wax
because the density of the object is less than that of the displaced liquid
3.Which material will displace a volume of water equal to its own volume?
iron, lead, and aluminum
because Arquimedes's principle: any body plunged inside a fluid in this case water experiences an ascending force called push, equivalent to the weight of the fluid removed by the body
4.Which material will displace a volume of water greater than its own volume?
None of them
Answer:
So waves are everywhere. But what makes a wave a wave? What characteristics, properties, or behaviors are shared by the phenomena that we typically characterize as being a wave? How can waves be described in a manner that allows us to understand their basic nature and qualities?
A wave can be described as a disturbance that travels through a medium from one location to another location. Consider a slinky wave as an example of a wave. When the slinky is stretched from end to end and is held at rest, it assumes a natural position known as the equilibrium or rest position. The coils of the slinky naturally assume this position, spaced equally far apart. To introduce a wave into the slinky, the first particle is displaced or moved from its equilibrium or rest position. The particle might be moved upwards or downwards, forwards or backwards; but once moved, it is returned to its original equilibrium or rest position. The act of moving the first coil of the slinky in a given direction and then returning it to its equilibrium position creates a disturbance in the slinky. We can then observe this disturbance moving through the slinky from one end to the other. If the first coil of the slinky is given a single back-and-forth vibration, then we call the observed motion of the disturbance through the slinky a slinky pulse. A pulse is a single disturbance moving through a medium from one location to another location. However, if the first coil of the slinky is continuously and periodically vibrated in a back-and-forth manner, we would observe a repeating disturbance moving within the slinky that endures over some prolonged period of time. The repeating and periodic disturbance that moves through a medium from one location to another is referred to as a wave.
Hope That Helps!!
Explanation:
The Electromagnetic and Visible Spectra. I believe..