In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
The highest trophic level has the least available energy in kilojoules.
Even though the food web is not shown in the question, but we know that energy decreases steadily as it is passed on from one trophic level to the next according to the second law of thermodynamics.
Energy enters into the system from the sun. The primary producers utilize this energy to produce food. As plants are eaten by animals, this energy is transferred along the food web an diminishes at each higher trophic level.
At the highest trophic level, the the least available energy in kilojoules in this food web is found.
Learn more: brainly.com/question/2233704
Answer:
Yes, there is such a way.
Explanation:
If currents flow in the same direction in two or more long parallel wires, there will be an attractive force between the wires. If the current flows in different directions, there will be a repulsive force between the wires. In this case, these three parallel wires, can be be made to carry current in the same direction, creating an attractive force between all three wires.
Note that it is not possible to have at the least one of them carry current in the opposite direction and still have an attractive current between them.
Explanation:
Total mass=100+10=110
Total weight=mass×gravitational field strength
=110×10
=1100N
Work done=force×distance
=1100×10
=11000J
<em>Please mark me as brainliest if this helped you!</em>
ytyjjryjtjtyjtyjtyyjetyeyjetyyjeytjtyjetyjtjetyjetyeyjetyj