1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
11

An 800 N man climbs 5 m up a ladder. How much gravitational potential energy does he gain?

Physics
1 answer:
Artemon [7]3 years ago
5 0

Answer:

4000J

Explanation:

Given parameters:

Weight of the man  = 800N

Height of ladder  = 5m

Unknown:

Gravitational potential energy gained  = ?

Solution:

The gravitational potential energy is due to the position of a body.

 Gravitational potential energy = weight x height

Now insert the parameters;

 Gravitational potential energy  = 800 x 5  = 4000J

You might be interested in
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by
Eduardwww [97]

Complete Question:

A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.

The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.

Answer:

Power = 54.07 W

Explanation:

Mass of the block = 10 kg

Angle made with the horizontal, θ = 60°

Distance covered, d = 5 m

Tension in the rope, T = 40 N

Coefficient of kinetic friction, \mu = 0.2

Let the Normal reaction = N

The weight of the block acting downwards = mg

The vertical resolution of the 40 N force, f_{y} = 40sin \theta

\sum f(y) = 0

N + 40 sin \theta - mg = 0\\N = -40sin60 + 10*9.81 = 0\\N = 63.46 N

\sum f(x) = 0

40 cos 60 - f_{r} - ma = 0\\ f_{r} = \mu N\\ f_{r} = 0.2 * 63.46\\ f_{r} = 12.69 N\\40cos 60 - 12.69-10a = 0\\7.31 = 10a\\a = 0.731 m/s^{2}

v^{2}  = u^{2} + 2as\\u = 0 m/s\\v^{2}  =  2 * 0.731 * 5\\v^{2}  = 7.31\\v = \sqrt{7.31} \\v = 2.704 m/s

Power, P = Fvcos \theta

P = 40 *2.704 cos60\\P = 54.074 W

7 0
3 years ago
Which statements about Earth’s core help explain Earth’s magnetic field? Check all that apply.
nalin [4]
<span>The inner core is liquid and moving.</span>
7 0
3 years ago
Read 2 more answers
Question 4 (18 marks) (a) During a Physics Lab experiment, 1 st year SFY students analyzed the behavior of capacitors by connect
Nataly_w [17]

Answer:

1.) 274.5v

2.) 206.8v

Explanation:

1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.

The potential difference and charge across EACH capacitor will be

V = Voe

Where Vo = initial voltage

e = natural logarithm = 2.718

For the first capacitor 2.50 µF,

V = Vo × 2.718

746 = Vo × 2.718

Vo = 746/2.718

Vo = 274.5v

To calculate the charge, use the below formula.

Q = CV

Q = 2.5 × 10^-6 × 274.5

Q = 6.86 × 10^-4 C

For the second capacitor 6.80 µF 

V = Voe

562 = Vo × 2.718

Vo = 562/2.718

Vo = 206.77v

The charge on it will be

Q = CV

Q = 6.8 × 10^-6 × 206.77

Q = 1.41 × 10^-3 C

B.) Using the formula V = Voe again

165 = Vo × 2.718

Vo = 165 /2.718

Vo = 60.71v

Q = C × 60.71

Q = C

4 0
2 years ago
Heat is transfered from the heating elements to the pot
Varvara68 [4.7K]
Hear is transferred from the heating elements to the Pot by Conductivity
8 0
3 years ago
Water is pumped steadily out of a flooded basement at a speed of 5.4 m/s through a uniform hose of radius 0.83 cm. The hose pass
Gala2k [10]

To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.

The work done would be defined as

\Delta W = \Delta PE + \Delta KE

Where,

PE = Potential Energy

KE = Kinetic Energy

\Delta W = (\Delta m)gh+\frac{1}{2}(\Delta m)v^2

Where,

m = Mass

g = Gravitational energy

h = Height

v = Velocity

Considering power as the change of energy as a function of time we will then have to

P = \frac{\Delta W}{\Delta t}

P = \frac{\Delta m}{\Delta t}(gh+\frac{1}{2}v^2)

The rate of mass flow is,

\frac{\Delta m}{\Delta t} = \rho_w Av

Where,

\rho_w = Density of water

A = Area of the hose \rightarrow A=\pi r^2

The given radius is 0.83cm or 0.83 * 10^{-2}m, so the Area would be

A = \pi (0.83*10^{-2})^2

A = 0.0002164m^2

We have then that,

\frac{\Delta m}{\Delta t} = \rho_w Av

\frac{\Delta m}{\Delta t} = (1000)(0.0002164)(5.4)

\frac{\Delta m}{\Delta t} = 1.16856kg/s

Final the power of the pump would be,

P = \frac{\Delta m}{\Delta t}(gh+\frac{1}{2}v^2)

P = (1.16856)((9.8)(3.5)+\frac{1}{2}5.4^2)

P = 57.1192W

Therefore the power of the pump is 57.11W

6 0
3 years ago
Other questions:
  • True or false Plant cells and animal cells have all the same major parts
    13·2 answers
  • Calculate the speed of a bus that travels a distance of 55 miles in 0.75 hours.
    13·1 answer
  • If Chris drives 27 km N and then 40 km E , what is the distance and displacement
    14·1 answer
  • Two technicians are discussing the need for the history of the vehicle. Technician A says that an accident could cause faults du
    9·1 answer
  • What is the name of the perceived change in a sound wave’s frequency due to motion between the observer and the sound source?
    15·2 answers
  • Dr. Alley has helped drill many holes in ice sheets. Special tools can be lowered down the holes on cables, and tracked to learn
    11·1 answer
  • What best determines whether a borrower’s interest rate goes up or down?
    13·1 answer
  • How long (in seconds) does it take a car accelerating at 3.1 m/s2 to go from rest<br> to 51 m/s?
    13·1 answer
  • A. A land speed car can decelerate at 9.8m/s. How long does it take the car to come to a complete stop from a run of 885 km/hr (
    5·1 answer
  • Where is the most deposition most likely to occur?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!