Answer: (1) 5.0 x 10^ -10 s
Explanation:
1.5 x 10^-1 m / 3 x 10^8 = .5 x 10^-9
= 5 x 10^-10
Answer:
Option B. magnitude of displacement of a sound pressure wave
Explanation:
Amplitude is simply the maximum displacement of a wave from its mean position.
Answer:

Explanation:
The energy lost due to air friction is equal to the mechanical energy lost by the parachutist during the fall.
The initial mechanical energy of the parachutist (at the top) is equal to his gravitational potential energy:

where
m = 20.1 kg is his mass
is the acceleration due to gravity
h = 662 m is the initial heigth
The final mechanical energy (at the bottom) is equal to his kinetic energy:

where
v = 7.12 m/s is the final speed of the parachutist
Therefore, the energy lost due to air friction is:

This bifurcation is called a saddle-node bifurcation. In it, a pair of hyperbolic equilibria, one stable and one unstable, coalesce at the bifurcation point, annihilate each other and disappear.
<h3>What is a bifurcation equilibria?</h3>
- The mathematical study of changes in a family of curves' qualitative or topological structure, such as the integral curves of a family of vector fields or the solutions to a family of differential equations, is known as bifurcation theory.
- A bifurcation happens when a tiny, gradual change in a system's parameter values (the bifurcation parameters) results in an abrupt, "qualitative," or topological change in the system's behavior.
- This term is most frequently used to refer to the mathematical study of dynamical systems.
- Both continuous systems (represented by ordinary, delay, or partial differential equations) and discrete systems can experience bifurcations (described by maps).
To learn more about bifurcation equilibria, refer to
brainly.com/question/14728055
#SPJ4
Newton's Third Law- For every action there is an equal and opposite reaction... Does this answer your question? If not, I can explain further...