The fraction of radioisotope left after 1 day is
, with the half-life expressed in days
Explanation:
The question is incomplete: however, we can still answer as follows.
The mass of a radioactive sample after a time t is given by the equation:

where:
is the mass of the radioactive sample at t = 0
is the half-life of the sample
This means that the mass of the sample halves after one half-life.
We can rewrite the equation as

And the term on the left represents the fraction of the radioisotope left after a certain time t.
Therefore, after t = 1 days, the fraction of radioisotope left in the body is

where the half-life
must be expressed in days in order to match the units.
Learn more about radioactive decay:
brainly.com/question/4207569
brainly.com/question/1695370
#LearnwithBrainly
Mass of the object is given as

now the speed of object is given as

here we know that


now we will have

now we will have kinetic energy of the object as



now the power is defined as rate of energy
so here we can find power as


so above is the power used for the object
Answer:
the wind carries abrasive materials
Explanation:
such as sand and salt over time theses small particles slowly strip way at the land form sculpting it by eroding the softer layers first
Answer:
The observed wavelength on Earth from that hydrogen atom is
.
Explanation:
Given that,
The actual wavelength of the hydrogen atom, 
A hydrogen atom in a galaxy moving with a speed of, 
We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

is the observed wavelength

So, the observed wavelength on Earth from that hydrogen atom is
. Hence, this is the required solution.
F= ma; a= F/m
a = 26.4 N/60 kg= 0.44 m/s^2