1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
5

Rewrite the expression by factoring out (w-5)

Mathematics
1 answer:
lara [203]3 years ago
5 0

Answer:

(w - 5)(2w² + 7)

Step-by-step explanation:

Given

2w²(w - 5) + 7(w - 5) ← factor out (w - 5) from each term

= (w - 5)(2w² + 7)

You might be interested in
Scott took out a 72 month loan for $35,000 to purchase a new boat. If Scott paid $8,925 in simple interest, what was the interes
diamong [38]

Answer:

Option 4.7% = 3,500 x 4.7% =$164.50 simple annual interest.

82.25 this is what Scott will pay in 6 months at simple interest.

 

Option 4.2% =3,500 x (1 +0.042/12)^6 =3,500 x 1.0035^6=$3,574.15.

3,500 =$74.15 this is what Scott will pay in 6 months at compounded interest.

 

The compound option is cheaper by: 74.15 =$8.10.

6 0
2 years ago
Read 2 more answers
There are 446 highlighters in a carton there are 38 cartons. What is the total amount of highlighters in all Carton. Please show
Kisachek [45]
You would do 38 times 446 which equals 16056
8 0
3 years ago
Read 2 more answers
Please help me on this question
Alina [70]

Answer:

DE = 13.4 cm  (to 1 decimal place)

Step-by-step explanation:

Given: ABCD is a square

BC = AC = 12 cm    (opposite sides of a square are congruent)

E is midpoint of BC   (given)

BE = EC  = 12/2 = 6 cm

CD = AB = 12 cm   (opposite sides of a square are congruent)

angle ECD is a right angle (interior angles of a square are 90 deg.)

Consider right triangle ECD

DE = sqrt(EC^2+CD^2)    ............. pythagorean theorem

= sqrt(6^2+12^2)

= sqrt ( 36+144 )

= sqrt (180)

= 2 sqrt(45)

= 13.416 (to three dec. places)

8 0
2 years ago
Read 2 more answers
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Find the solutions to the equation<br><br> -3y(2y+5)=0
noname [10]

Answer:

The solutions are y=0, -5/2

Step-by-step explanation:

-3y(2y+5)=0

We can use the zero product property

-3y =0  2y+5 =0

y =0     2y = -5

             y = -5/2

The solutions are y=0, -5/2

3 0
2 years ago
Other questions:
  • Please help! Fraction Problem! :0!! will rate! 15 points!
    13·1 answer
  • Alberta has 5 shirts and 4 pants. 3 of the shirts are her favorite and 2 of the pants are her favorite. If Alberta chooses an ou
    6·1 answer
  • How many x-intercepts will the graph of y = 3x2 + 6x + 3 have? (Use the discriminant to
    6·2 answers
  • How do you explain -3 1/3 / 4/9
    7·1 answer
  • Determining the Number of Solutions of a System of Line
    13·1 answer
  • Consider a project that has an expected completion time of 60 weeks and a standard deviation of five weeks. What is the probabil
    10·1 answer
  • The manager of a factory wants to compare the mean number of units assembled per employee in a week for two new assembly techniq
    5·1 answer
  • PLEASE ANSWER HONESTLY (PLEASE BE HELPFULL I HAVE BEEN STUCK ON THIS PROBLEM) WILL MARK BRANIEST IF CORRECT. (no links my comput
    9·1 answer
  • Hi! I need help ASAP. Thank you
    15·2 answers
  • -
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!