Answer:
x=4
Step-by-step explanation:
5-3(2x-7)=5-6x+21=-6x+26
--------------------------------------
12-5(x-2)=12-5x+10=-5x+22
--------------------------------------
-6x+26=-5x+22
-6x-(-5x)=22-26
-6x+5x=-4
-x=-4
x=4
There are 18 pages in his notebook because if it's 1/6, you do 3 x 6 which is 18 pages.
<h2>Recurring decimals such as 0.26262626…, all integers and all finite decimals, such as 0.241, are also rational numbers. Alternatively, an irrational number is any number that is not rational. ... For example, the square root of 2 is an irrational number because it cannot be written as a ratio of two integers.</h2><h2>Worked Examples
</h2><h2>1 - recognize Surds
</h2><h2>A surd is a square root which cannot be reduced to a whole number.
</h2><h2>
</h2><h2>For example,
</h2><h2>
</h2><h2>4–√=2
</h2><h2>is not a surd, because the answer is a whole number.
</h2><h2>
</h2><h2>Alternatively
</h2><h2>
</h2><h2>5–√
</h2><h2>is a surd because the answer is not a whole number.
</h2><h2>
</h2><h2>You could use a calculator to find that
</h2><h2>
</h2><h2>5–√=2.236067977...
</h2><h2>but instead of this we often leave our answers in the square root form, as a surd.
</h2><h2>
</h2><h2>2 - Simplifying Surds
</h2><h2>During your exam, you will be asked to simplify expressions which include surds. In order to correctly simplify surds, you must adhere to the following principles:
</h2><h2>
</h2><h2>ab−−√=a−−√∗b√
</h2><h2>a−−√∗a−−√=a
</h2><h2>Example
</h2><h2>(a) - Simplify
</h2><h2>
</h2><h2>27−−√
</h2><h2>Solution
</h2><h2>(a) - The surd √27 can be written as:
</h2><h2>
</h2><h2>27−−√=9–√∗3–√
</h2><h2>9–√=3
</h2><h2>Therefore,
</h2><h2>
</h2><h2>27−−√=33–√
</h2><h2>Example
</h2><h2>(b) - Simplify
</h2><h2>
</h2><h2>12−−√3–√
</h2><h2>Solution
</h2><h2>(b) -
</h2><h2>
</h2><h2>12−−√3–√=12−−√∗3–√=(12∗3)−−−−−−√=36−−√
</h2><h2>36−−√=6
</h2><h2>Therefore,
</h2><h2>
</h2><h2>12−−√3–√=6
</h2><h2>Example
</h2><h2>(c) - Simplify
</h2><h2>
</h2><h2>45−−√5–√
</h2><h2>Solution
</h2><h2>(c) -
</h2><h2>
</h2><h2>45−−√5–√=45/5−−−−√=9–√=3
</h2><h2>Therefore,
</h2><h2>
</h2><h2>45−−√5–√=3</h2>
First, find the converting ratio for kilometers to miles, which is
1km = 1.61 miles.
Then, divide 410 on the side for miles on the ratio.
410km=254.67miles
Therefore, 410 km is equal to 254.67 miles.
Answer:
logb(x y) = y ∙ logb(x)
Step-by-step explanation: