Answer:
When the solar system settled into its current layout about 4.5 billion years ago, Earth formed when gravity pulled swirling gas and dust in to become the third planet from the Sun. Like its fellow terrestrial planets, Earth has a central core, a rocky mantle and a solid crust.
The pressure of the gas is obtained as 48 atm.
<h3>What is the total pressure?</h3>
Now we know that;
Number of moles of CH4 = 48.0 grams /16 g/mol = 3 moles
Number of moles of H2 = 56.0 grams/2 g/mol = 28 moles
Total number of moles present = 3 moles + 28 moles = 31 moles
Using;
PV =nRT
P = total pressure
V = total volume
n = total number of moles
R = gas constant
T = temperature
P = nRT/V
P = 31 * 0.082 * 286/15
P = 48 atm
Learn more about pressure of a gas:brainly.com/question/18124975
#SPJ1
Specific heat is the quantity of heat required to change the temperature of 1 gram of a substance by 1 degree Celsius. It is the amount per unit mass that is required to raise the temperature by one degree Celsius. Every substance has its own specific heat and each has its own distinct value. The units of specific heat are joules per gram-degree Celsius (J/f C) and sometimes J/Kg K may also be used.
Answer:
The molar mass of the liquid 62.89 g/mol
Explanation:
Step 1: Data given
Mass of the sample = 0.1 grams
Temperature = 70°C
Volume = 750 mL
Pressure = 0.05951 atm
Step 2: Calculate the number of moles
p*V = n*R*T
n = (p*V)/(R*T)
⇒ with n = the number of moles gas = TO BE DETERMINED
⇒ with p = The pressure = 0.05951 atm
⇒ with V = The volume of the flask = 750 mL = 0.750 L
⇒ with R = The gasconstant = 0.08206 L*atm/K*mol
⇒with T = the temperature = 70 °C = 343 Kelvin
n = (0.05951 *0.750)/(0.08206*343)
n = 0.00159 moles
Step 3: Calculate molar mass
Molar mass = mass / moles
Molar mass =0.1 gram / 0.00159 moles
Molar mass = 62.89 g/mol
The molar mass of the liquid 62.89 g/mol