A constant velocity implies the two forces must be equal and opposite.
Friction acts horizontal to the ground, therefore we must find the force applied to the sled rope that acts horizontal to the ground.
Do this by resolving:
Force = 80cos53
The force opposing this is equal, and so also = 80cos53 = 48 N (2 sig. fig.)
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Explanation:
As we know that zinc reacts with copper sulfate
so the reaction is given as

so here we have




Now total mass of reactant is given as

Mass of the product is given as

Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Answer:
Nuclear energy comes from splitting atoms in a reactor to heat water into steam, turn a turbine and generate electricity. Ninety-three nuclear reactors in 28 states generate nearly 20 percent of the nation's electricity, all without carbon emissions because reactors use uranium, not fossil fuels.
<h2>please follow me</h2>
Answer:
2.35 kgm^2
Explanation:
we take length 68.7 cm as x-axis and 47.5 cm as y-axis then the axis about which we have to find out moment of inertia will be z-axis.
moment of inertia about x-axis
kg-m2

by perpendicular axis theorem
