Answer:
0.53 m
Explanation:
First of all, we have to consider the vertical motion of the ball, in order to find the time it takes for the marble to reach the ground. The initial height is
, the initial vertical velocity is zero, while the acceleration is
, so the vertical position at time t is given by

By demanding y(t)=0, we find the time t at which the ball reaches the ground:


Now we can find the horizontal range of the marble: we know the initial horizontal speed (v=1.24 m/s), we know the total time of the motion (t=0.43 s), and since the horizontal speed is constant, the total distance traveled on the horizontal direction is

<span>Acceleration is the rate of
change of the velocity of an object that is moving. This value is a result of
all the forces that is acting on an object which is described by Newton's
second law of motion. Calculations of such is straightforward, if we are given
the final velocity, the initial velocity and the total time interval. However, we are not given these values. We are only left by using the kinematic equation expressed as:
d = v0t + at^2/2
We cancel the term with v0 since it is initially at rest,
d = at^2/2
44 = a(6.2)^2/2
a = 2.3 m/s^2
</span>
64 miles/hour
Therefore 1/64 hours/mile
68 miles * 1/64 hours/mile (notice how miles cancels out)
Therefore the answer is 68/64 hours = 1.0625 hours = 1 hour 3min and 45sec.
No
For example a rock was broken into one big and one little piece. The properties of these 2 pieces are still the same even though they have different shapes.