The length of the line joining the center of the circle and each coordinate is equal.
Let the center of the circle be (a, b), then
(a - 10)^2 + (b - 3)^2 = (a - 3)^2 + (b - 10)^2 = (a + 4)^2 + (b - 3)^2
a^2 - 20a + 100 + b^2 - 6b + 9 = a^2 - 6a + 9 + b^2 - 20b + 100 = a^2 + 8a + 16 + b^2 - 6b + 9
a^2 - 20a + 100 + b^2 - 6b + 9 = a^2 - 6a + 9 + b^2 - 20b + 100 . . . (1)
a^2 - 20a + 100 + b^2 - 6b + 9 = a^2 + 8a + 16 + b^2 - 6b + 9 . . . (2)
From (1): 14a - 14b = 0 => a = b
From (2): 28a = 84 => a = 84/28 = 3
Therefore, center = (a, b) = (3, 3)
<u>Answer</u> : The demonstration is below :)
Step-by-step explanation :
<u>We use Pythagoras' </u><u>theorem </u><u>:</u>
- In the triangle ABC we have :
AB² = AC² - BC² = 15² - 9² = 144 = 12²
- In the triangle ABD we have :
DB² = AD² - AB² = 13² - 12² = 5²
cos(a) = BD/AD = 5/13