Explanation:
Apply the mass of balance as follows.
Rate of accumulation of water within the tank = rate of mass of water entering the tank - rate of mass of water releasing from the tank



[/tex]\frac{dh}{dt} + \frac{0.01}{0.01}h[/tex] = 

+ h = 1
= 1 - h
= dt
= t + C
Given at t = 0 and V = 0
= 0
or, h = 0
-ln(1 - h) = t + C
Initial condition is -ln(1) = 0 + C
C = 0
So, -ln(1 - h) = t
or, t =
........... (1)
(a) Using equation (1) calculate time to fill the tank up to 0.6 meter from the bottom as follows.
t =
t =
= 
= 0.916 seconds
(b) As maximum height of water level in the tank is achieved at steady state that is, t =
.
1 - h = exp (-t)
1 - h = 0
h = 1
Hence, we can conclude that the tank cannot be filled up to 2 meters as maximum height achieved is 1 meter.
Answer:
8.354 nanometers
Explanation:
To treat a diffusive process in function of time and distance we need to solve 2nd Ficks Law. This a partial differential equation, with certain condition the solution looks like this:

Where Cs is the concentration in the surface of the solid
Cx is the concentration at certain deep X
Co is the initial concentration of solute in the solid
and erf is the error function
Then we solve right side,

And we need to look up the inverse error function of 0.001964 resulting in: 0.00174055
Then we solve for x:

D Microscopes
because they use them for DNA
a,b,and c, all you an item that can be used and not tested with.
Density decreases that's why ice floats on water because it's less dense than water.
Answer:
The lightbulb transforms it into thermal energy.
Explanation: