In order to solve the total pressure that is exerted by the gases, we need to use the Dalton's Law of Partial pressures. These are the calculations that you need to find out the total amount of pressure exerted to the gases:
3.00atm (N2) + 1.80atm (O2) + 0.29atm (Ar) + 0.18atm (He) + 0.10atm (H),
add up all of that, and the answer would turn out to be: 5.37atm.
Answer:
600.7 moles
Explanation:
Applying,
PV = nRT................... Equation 1
Where P = Pressure of oxygen, V = Volume of oxygen, n = number of moles, R = molar gas constant, T = Temperature.
make n the subject of the equation
n = PV/RT............... Equation 2
From the question,
Given: P = 190 atm, V = 35 L, T = 135 K
Constant: R = 0.082 atm.dm³/K.mol
Substitute these values into equation 2
n = (190×35)/(135×0.082)
n = 600.7 moles of xygen
Answer:
Example
0.5 mol of sodium hydroxide is dissolved in 2 dm3 of water. Calculate the concentration of the sodium hydroxide solution formed.
Concentration =
Concentration = 0.25 mol/dm3
Volume units
Volumes used in concentration calculations must be in dm3, not in cm3. It is useful to know that 1 dm3 = 1000 cm3. This means:
divide by 1000 to convert from cm3 to dm3
multiply by 1000 to convert from dm3 to cm3
For example, 250 cm3 is 0.25 dm3 (250 ÷ 1000). It is often easiest to convert from cm3 to dm3 before continuing with a concentration calculation.
Question
100 cm3 of dilute hydrochloric acid contains 0.02 mol of dissolved hydrogen chloride. Calculate the concentration of the acid in mol/dm3.
Reveal answer
Converting between units
The relative formula mass of the solute is used to convert between mol/dm3 and g/dm3:
to convert from mol/dm3 to g/dm3, multiply by the relative formula mass
to convert from g/dm3 to mol/dm3, divide by the relative formula mass
Remember: the molar mass is the Ar or Mr in grams per mol.
Example
Calculate the concentration of 0.1 mol/dm3 sodium hydroxide solution in g/dm3. (Mr of NaOH = 40)
Concentration = 0.1 × 40
= 4 g/dm3
Answer:
=1.666 liters
Explanation:
1 mole of a has at standard temperature and pressure occupies a volume of 22.4 liters.
0.5 moles of nitrogen occupy a volume of (0.5 moles×22.4 dm³/mol)/ 1
=11.2 liters.
Standard pressure= 1 atmosphere (Atm)
Standard temperature = 273.15 Kelvin
According to Combined gas equation, P₁V₁/T₁=P₂V₂/T₂
Let us take the conditions under standard conditions as the reference, with the subscript 1 and the conditions under the 5L container to be scenario 2 with subscript 2.
Therefore P₂ =P₁V₁T₂/T₁V₂
Substituting for the values we get:
P₂= (1 atm× 11.2L ×203K)/ (273K×5L)
=1.666 atm
Answer:
the answer is 0 amu I hope it helps