To convert a fraction to a decimal, divide the numerator by the denominator (divide the top by the bottom)
Answer:
6 mm and 9 mm are the dimensions of the piece of plastic.
Step-by-step explanation:
Keep in mind the formulas for the area and perimeter of a rectangle:
A = lw
P = 2 (l + w)
List the factors of 54:
1, 2, 3, 6, 9, 18, 27, 54
POSSIBLE DIMENSIONS of the piece of plastic:
1 mm and 54 mm:
Area - 54 mm^2
Perimeter - 110 mm
2 mm and 27 mm
Area - 54 mm^2
Perimeter - 58 mm
3 mm and 18 mm
Area - 54 mm^2
Perimeter - 42 mm
6 mm and 9 mm
Area - 54 mm^2
Perimeter - 30 mm
The rectangular piece of plastic with the dimensions 6mm and 9 mm corresponds with the area and perimeter of the piece of plastic mentioned. So these are the correct dimensions.
Hope this helps!
We need to first find a common denominator. This means that we need the 12 and the 3 to be the same number. We can change the 1/3 into 4/12 and see that 9/12 is larger than 4/12.
Answer:
sure
Step-by-step explanation:
Answer:
10.
x P(X)
0 0.238
1 0.438
2 0.269
3 0.055
11.
0.707
There is 70.7% chance that at least one but at most two adults in the sample believes in the ghost
12.
1.14≅1
There will be one adult out of three we expect to believe in the ghost
Step-by-step explanation:
The probability distribution is constructed using binomial distribution.
We have to construct the probability distribution of the number adults believe in ghosts out of three adults. so,
x=0,1,2,3
n=3
p=probability of adults believe in ghosts=0.38
The binomial distribution formula
nCxp^xq^n-x=3cx0.38^x0.62^3-x
is computed for x=0,1,2,3 and the results depicts the probability distribution of the number adults believe in ghosts out of three adults.
x P(X)
0 0.238
1 0.438
2 0.269
3 0.055
11.
P(at least one but at most two adults in the sample believes in the ghost )= P(x=1)+P(x=2)=0.437+0.269=0.707
P(at least one but at most two adults in the sample believes in the ghost )=70.7%
12. E(x)=n*p
here n=3 adults and p=0.38
E(x)=3*0.38=1.14
so we expect one adult out of three will believe in the ghosts.