A variable that stands alone and isn't changed by the other variables you are trying to measure. For example, if you’re trying to see if drinking milk affects a persons height, then the independent variable is the milk, and the dependent variable is the persons height change
Answer:
The He₂ 2+ ion is more stable since it has a higher bond order (bond order = 1) than the He₂ + ion (bond order = 1/2).
Explanation:
Molecular orbital of He₂⁺

There are two electrons in bonding and 1 electron in antibonding orbital
Bond order =
= 
Molecular orbital of He₂⁺²

There are two electrons in bonding and 0 electron in antibonding orbital
Bond order = 
= 1
So bond order of He₂⁺² is 1 which is more stable than He₂⁺ whose bond order is
.
Answer:
68.1% is percent yield of the reaction
Explanation:
The reaction of methane with oxygen is:
CH₄ + 2O₂ → CO₂ + 2H₂O
<em>Where 2 moles of oxygen react per mole of CH₄</em>
<em />
Percent yield is:
Actual yield (28.2g CO₂) / Theoretical yield * 100
To solve this question we need to find theoretical yield finding limiting reactant :
<em>Moles CH₄:</em>
15.1g CH₄ * (1mol / 16.04g) = 0.9414 moles
<em>Moles O₂:</em>
81.2g * (1mol / 32g) = 2.54 moles
For a complete reaction of 0.9414 moles of CH₄ are needed:
0.9414 moles CH₄ * (2 mol O₂ / 1mol CH₄) = 1.88 moles of O₂. As there are 2.54 moles, O₂ is in excess and <em>CH₄ is limiting reactant</em>
In theoretical yield, the moles of methane added = Moles of CO₂ produced. That is 0.9414 moles CO₂. In grams = Theoretical yield:
0.9414 moles CO₂ * (44.01g / mol) = 41.43g CO₂
Percent yield: 28.2g CO₂ / 41.43g CO₂ * 100=
<h3>68.1% is percent yield of the reaction</h3>
If the object is less dense then the object will float