M = 22.1 g
V = 52.3 mL
D = ?
D = m/V
= 22.1/52.3
= 22.1*10/52.3*10
= 221/523
= 0.4
There. I’m sorry i forgot what exactly was the S.I. unit of density :(
Answer:
Explanation:
In a reaction, where, one of the reactant produces a colored product, visible spectroscopy can be used to determined the order of a reaction, the change in concentration of the reactant which forms the colored product is determined by absorbance measurement over time. The data for the concentration and time are plotted on the y and x axis and If we get a straight line it is a zero-order reaction. If instead, a plot of ln[concentration] versus time gives a straight line, it is a first order reaction. However, If 1/concentration versus time gives a straight line, it is a second order reaction kinetics. The other reactants may be changed while keeping this reactant as constant and change on rate of the reaction is observed to see If the other reactant affects the reaction or not.
Answer:
1.52atm is the pressure of the gas
Explanation:
To solve this question we must use the general gas law:
PV = nRT
<em>Where P is pressure in atm = Our incognite</em>
<em>V is volume = 50.5L</em>
<em>n are moles of gas = 3.25moles</em>
<em>R is gas constat = 0.082atmL/molK</em>
<em>And T is absolute temperature = 288.6K</em>
To solve pressure:
P = nRT / V
P = 3.25mol*0.082atmL/molK*288.6K / 50.5L
P = 1.52atm is the pressure of the gas
<em>Answer:</em>
4) the one that is reduced, which is the oxidizing agent
<em>Explanation:</em>
<em>An oxidizing agent is one that causes oxidation by gaining electrons from another atom/molecule. </em>
Answer: 5
Explanation: this is because the energy level of the emitted of absorbed photon increases as the number of electron shell decreases, thereby making the inner shell have higher energy than other shells