The combustion reaction of propane would be expressed as:
C3H8 + 5O2 = 3CO2 + 4H2O
To determine the mass of water that is produced from the given amount of propane, we use the mass of propane and the relation of the substances from the balanced reaction. We do as follows:
moles propane = 22 g C3H8 ( 1 mol / 44.1 g ) = 0.50 mol C3H8
moles H2O = 0.50 mol C3H8 ( 4 mol H2O / 1 mol C3H8) = 2 mol H2O
mass H2O = 2 mol H2O ( 18.02 g / 1 mol ) = 36.04 g H2O
Therefore, the mass of water that is produced from 22 grams of propane would be 36.04 g.
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
it will be hard, but you can do it. Just study given the materials for the course. Understand enthalpy and entropy, and various types of bonding and you'll be fine.
You can determine it by paying attention to the unique characteristics that could only be found at heart's tissue, such as :
- looks striated or stripped
- The bundles are breached like tree but connected at both ends
hope this helps
First one is reactants and then second one is products