Answer:
2Ca₃(PO₄)₂ + 10C + 6SiO₂ → 6CaSiO₃ + P₄ + 10CO.
Explanation:
- To balance a chemical reaction, we should apply the law of conservation of mass.
- Law of conversation of mass states that the no. of atoms is equal in both sides of the chemical reaction.
- So, the balanced chemical reaction is:
<em>2Ca₃(PO₄)₂ + 10C + 6SiO₂ → 6CaSiO₃ + P₄ + 10CO.</em>
that 2 mol of Ca₃(PO₄)₂ react with 10 mol of C and 6 mol of SiO₂ to produce 6 mol of CaSiO₃, 1 mol of P₄ and 10 mol of CO.
Hydrogen (H) was first, followed by helium (He).
1) when litmus paper is dipped into a acid solution, the litmus paper turns red.
<span>2) acid reacts with metals to produce hydrogen gas </span>
<span>3) the equation of an acidic substance begins with the letter 'H' such as HCl </span>
Answer:
The molarity of the solution is 0.29 
Explanation:
Molarity, or molar concentration, is a measure of the concentration of a solute in a solution, be it some molecular, ionic or atomic species. It is defined as the number of moles of solute that are dissolved in a given volume.
Molarity is calculated as the quotient between the number of moles of solutes and the volume of the solution:

Molarity is expressed in units
.
In this case:
- number of moles of solute= 2.1 moles
- volume= 7.3 liters
Replacing:

Molarity= 0.29 
<u><em>The molarity of the solution is 0.29 </em></u>
<u><em></em></u>
Answer:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
Explanation:
We have the products of a reaction and we have to predict the reactants. Since the products are binary salt and water, this must be a neutralization reaction. In neutralizations, acids react with bases. The acid that gives place to Br⁻ is HBr, while the base the gives place to Ba²⁺ is Ba(OH)₂. The balanced chemical equation is:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O