1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
3 years ago
6

True or False: In a p-n junction diode, the absolute value of the electric field is the largest at the metallurgical junction (e

xactly where p-type and n-type semiconductors meet).
Physics
1 answer:
Delvig [45]3 years ago
6 0

Answer:

false

Explanation:

You might be interested in
There is a repulsive force between two charged objects when ____________ .
xxTIMURxx [149]
There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)
3 0
3 years ago
An electron passes through a point 2.83 cm 2.83 cm from a long straight wire as it moves at 35.5 % 35.5% of the speed of light p
igor_vitrenko [27]

Answer:

The magnitude of electron acceleration is 2.34 \times 10^{15} \frac{m}{s^{2} }

Explanation:

Given:

Distance from the wire to the field point r = 2.83 \times 10^{-2} m

Speed of electron v = 35.5 \%c

Current I = 17.7 A

For finding the acceleration,

First find the magnetic field due to wire,

  B = \frac{\mu _{o}I }{2\pi r }

Where \mu_{o} = 4\pi   \times 10^{-7}

  B = \frac{4\pi \times 10^{-7}  \times 17.7 }{2\pi (2.83 \times 10^{-2} ) }

  B = 12.50 \times 10^{-5} T

The magnetic force exerted on the electron passing through straight wire,

  F = qvB  

  F = 1.6 \times 10^{-19} \times 0.355 \times 3 \times 10^{8} \times 12.50 \times 10^{-5}

  F = 21.3 \times 10^{-16} N

From the newton's second law

  F = ma

Where m = mass of electron = 9.1 \times 10^{-31} kg

So acceleration is given by,

   a = \frac{F}{m}

   a = \frac{21.3 \times 10^{-16} }{9.1 \times 10^{-31} }

   a = 2.34 \times 10^{15} \frac{m}{s^{2} }

Therefore, the magnitude of electron acceleration is 2.34 \times 10^{15} \frac{m}{s^{2} }

7 0
3 years ago
4. Explain how states of matter change in regards to<br> a. Temperature-<br> b. Pressure-
Alina [70]
Temperature can change the state from solid to liquid causing it to melting, liquid to gas causing vaporization or a solid to a gas causing sublimation. Pressure alone cannot change the state of matter.
5 0
3 years ago
In a 49 s interval, 595 hailstones strike a glass window of an area of 0.954 m at an angle of 25° to the window surface. Each ha
eduard

Average  force on the window: 0.32 N

Explanation:

The average force exerted on the window is given by Newton's second law

F=\frac{\Delta p}{\Delta t}

where

\Delta p is the net change in momentum of the hailstones in a time interval of \Delta t

In order to find the change in momentum, we have to consider only the component of the hailstone's momentum perpendicular to the window, therefore:

p_i =m u sin \theta is the initial momentum of one hailstone, with

m = 7 g = 0.007 kg is the mass

u=4.5 m/s is the initial speed

\theta=25^{\circ} is the angle with the window

The final momentum is

p_f = mv sin \theta

where

v = 4.5 m/s is the final speed (the  collision is elastic so the speed is equal, while the direction changes)

\theta=-25^{\circ} (after the rebound, the direction has changed)

So the change in momentum of 1 hailstone is

\Delta p = mv sin(-25^{\circ})-mu sin(25^{\circ})=-2mu sin(25^{\circ})=-0.0266 kg m/s

We are interested only in the magnitude, so

\Delta p = 0.0266 kg m/s

There are 595 hailstones hitting the window in 49 s, so the total change in momentum is

\Delta p = 595\cdot 0.0266 = 15.8 kg m/s

And therefore, the average force on the window is

F=\frac{\Delta p}{\Delta t}=\frac{15.8}{49}=0.32 N

Learn more about  force:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

3 0
3 years ago
Unpolarized light of intensity I0 = 950 W/m2 is incident upon two polarizers. The first has its polarizing axis vertical, and th
Ket [755]

Answer:

Intensity of the light (first polarizer) (I₁) = 425 W/m²

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

Explanation:

Given:

Unpolarized light of intensity (I₀) = 950 W/m²

θ = 65°

Find:

a. Intensity of the light (first polarizer)

b. Intensity of the light (second polarizer)

Computation:

a. Intensity of the light (first polarizer)

Intensity of the light (first polarizer) (I₁) = I₀ / 2

Intensity of the light (first polarizer) (I₁) = 950 / 2

Intensity of the light (first polarizer) (I₁) = 425 W/m²

b. Intensity of the light (second polarizer)

Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ

Intensity of the light (second polarizer) (I₂) = (425)(0.1786)

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

5 0
4 years ago
Other questions:
  • The core collapse phase at the end of the life of a massive star is triggered when
    12·1 answer
  • What do you think the value will be for the car's distance
    8·1 answer
  • Why isn't Coulomb's law valid for dielectric objects, even if they are spherically symmetrical?
    11·1 answer
  • Why does a small pebble sin in water?
    7·1 answer
  • Much of the energy released in catabolic reactions is captured in ATP for use in other reactions. When the phosphate is transfer
    9·1 answer
  • A small ball with mass 1.20 kg is mounted on one end of a rod 0.860 m long and of negligible mass. The system rotates in a horiz
    9·1 answer
  • Two fluids that make use of water
    8·1 answer
  • What is the mass of an object moving with 80N of force and an acceleration of 8 m/s2?
    9·1 answer
  • Which of the following is a definition of acceleration? *
    8·1 answer
  • At what distance from a -5.35*10^-6 C charge will the electric potential be -500 v?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!