Answer:
t = 2.01 s
Vf = 19.7 m/s
Explanation:
It's know through the International System that the earth's gravity is 9.8 m/s², then we have;
Data:
- Height (h) = 20 m
- Gravity (g) = 9.8 m/s²
- Time (t) = ?
- Final Velocity (Vf) = ?
==================================================================
Time
Use formula:
Replace:
Everything inside the root is solved first. So, we solve the multiplication of the numerator:
It divides:
The square root is performed:
==================================================================
Final Velocity
use formula:
Replace:
Multiply:
==================================================================
How long does it take to reach the ground?
Takes time to reach the ground in <u>2.01 seconds.</u>
How fast does it hit the ground?
Hits the ground with a speed of <u>19.7 meters per seconds.</u>
Answer:
Tha ball- earth/floor system.
Explanation:
The force acting on the ball is the force of gravity when ignoring air resistance. At the moment the player releases the ball, until it reaches the top of its bounce, the small system for which the momentum is conserved is the ball- floor system. The balls exerts and equal and opposite force on the floor. <u>Here the ball hits the floor, because in any collision the momentum is conserved. Moment of the ball -floor system is conserved</u>. Mutual gravitation bring the ball and floor together in one system. As the ball moves downwards, the earth moves upwards, although with an acceleration on the order of 1025 times smaller than that of the ball. The two objects meet, rebound and separate.
To solve this problem it is necessary to apply the definition of severity of Newtonian laws in which it is specified that gravity is defined by

Where
G= Gravitational Constant
M = Mass of Earth
R= Radius from center of the planet
According to the information we need to find the gravity 350km more than the radius of Earth, then



Therefore the gravitational acceleration at 350km is 
Answer:
Explained below
Explanation:
When we eat food, our body gets chemical energy from it. Now, this chemical energy from the food is changed into some different energy forms that is useful to it. They include:
-Chemical to mechanical energy to aid in movement of muscles
- chemical to thermal energy to aid in regulating the body temperature.
- chemical to electrical energy to aid the brain in thinking.
Thus is similar to how a machine converts energy because machines also generate energy after being powered and convert to other forms of energy. For example, an alarm clock converts electrical energy to sound energy, hair dryer converts electrical energy to thermal/heat energy.