The initial speed of the shot is 15.02 m/s.
The Shot put is released at a height y<em> </em>from the ground with a speed u. It is released at an angle θ to the horizontal. In a time t, the shot put travels a distance <em>R</em> horizontally.
Pl refer to the attached diagram.
Resolve the velocity u into horizontal and vertical components, u ₓ=ucosθ and uy=u sinθ. The horizontal component remains constant in the absence of air resistance, while the vertical component varies due to the action of the gravitational force.
Write an expression for R.

Therefore,

In the time t, the net displacement of the shotput is y in the downward direction.
Use the equation of motion,

Substitute the value of t from equation (1).

Substitute -2.10 m for y, 24.77 m for R and 38.0° for θ and solve for u.

The shot put was thrown with a speed 15.02 m/s.
<span>The fluid in a graduated cylinder should be read at the BOTTOM of the meniscus.</span>
Answer:
Light does not require any medium to travel because light is a transverse wave
hope it helps
Answer:
a) R = ρ₀ L /π(r_b² - R_a²)
, b) ρ₀ = V / I π (r_b² - R_a²) / L
Explanation:
a) The resistance of a material is given by
R = ρ l / A
where ρ is the resistivity, l is the length and A is the area
the length is l = L and the resistivity is ρ = ρ₀
the area is the area of the cylindrical shell
A = π r_b² - π r_a²
A = π (r_b² - r_a²)
we substitute
R = ρ₀ L /π(r_b² - R_a²)
b) The potential difference is related to current and resistance by ohm's law
V = i R
we subsist the expression of resistance
V = I ρ₀ L /π (r_b² - R_a²)
ρ₀ = V / I π (r_b² - R_a²) / L
I see the word "when..." kind of fading out at the end of the first line.
Whatever comes after it may be important.
If you're just supposed to copy the expression into the box,
then the problem is that you left the 'e' out of it.
I'm guessing that you're supposed to enter whatever the expression becomes
when either N₀ or ' t ' has some special value that's in the first line.
Just taking a wild guess here . . . . .
If it's "Enter the expression ..... , when t=0 ." ,
then the correct answer in the box is N₀ .
But that's just a wild guess. As I pointed out, you cut off
the picture in the middle of the word 'when', and I've got
a hunch that there's something important after it.