1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
3 years ago
14

An electron passes through a point 2.83 cm 2.83 cm from a long straight wire as it moves at 35.5 % 35.5% of the speed of light p

erpendicularly toward the wire. At that moment a switch is flipped, causing a current of 17.7 A 17.7 A to flow in the wire. Find the magnitude of the electron's acceleration a a at that moment.
Physics
1 answer:
igor_vitrenko [27]3 years ago
7 0

Answer:

The magnitude of electron acceleration is 2.34 \times 10^{15} \frac{m}{s^{2} }

Explanation:

Given:

Distance from the wire to the field point r = 2.83 \times 10^{-2} m

Speed of electron v = 35.5 \%c

Current I = 17.7 A

For finding the acceleration,

First find the magnetic field due to wire,

  B = \frac{\mu _{o}I }{2\pi r }

Where \mu_{o} = 4\pi   \times 10^{-7}

  B = \frac{4\pi \times 10^{-7}  \times 17.7 }{2\pi (2.83 \times 10^{-2} ) }

  B = 12.50 \times 10^{-5} T

The magnetic force exerted on the electron passing through straight wire,

  F = qvB  

  F = 1.6 \times 10^{-19} \times 0.355 \times 3 \times 10^{8} \times 12.50 \times 10^{-5}

  F = 21.3 \times 10^{-16} N

From the newton's second law

  F = ma

Where m = mass of electron = 9.1 \times 10^{-31} kg

So acceleration is given by,

   a = \frac{F}{m}

   a = \frac{21.3 \times 10^{-16} }{9.1 \times 10^{-31} }

   a = 2.34 \times 10^{15} \frac{m}{s^{2} }

Therefore, the magnitude of electron acceleration is 2.34 \times 10^{15} \frac{m}{s^{2} }

You might be interested in
In the classic 1960s science-fiction comic book The Atom, a physicist discovers a basketball-sized meteorite (about 12 cm in rad
kirill [66]
This app is broken but
7 0
3 years ago
How will decreasing the amplitude of the sound waves from a television affect its intensity?
Colt1911 [192]

A. The sound will decrease in volume

6 0
3 years ago
A box of weight 280 N is being pulled to the right by a pulling force vec F of magnitude 50 N. The box is moving at a constant s
boyakko [2]

Answer:

what diagram. I can't see any

5 0
3 years ago
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 13.0 cm , giving it a ch
Leokris [45]

a) Electric field inside the paint layer: zero

b) Electric field just outside the paint layer: -3.62\cdot 10^7 N/C

c) Electric field 8.00 cm outside the paint layer: -7.27\cdot 10^7 N/C

Explanation:

a)

We can find the electric field inside the paint layer by applying Gauss Law: the total flux of the electric field through a gaussian surface is equal to the charge contained within the surface divided by the vacuum permittivity, mathematically:

\int EdS = \frac{q}{\epsilon_0}

where

E is the electric field

dS is the element of surface

q is the charge within the gaussian surface

\epsilon_0 = 8.85\cdot 10^{-12}F/m is the vacuum permittivity

Here we want to find the electric field just inside the paint layer, so we take a sphere of radius r as Gaussian surface, where

R = 6.5 cm = 0.065 m is the radius of the plastic sphere (half the diameter)

By taking the sphere of radius r, we note that the net charge inside this sphere is zero, therefore

q=0

So we have

\int E dS=0

which means that the electric field inside the paint layer is zero.

b)

Now we want to find the electric field just outside the paint layer: therefore, we take a Gaussian sphere of radius

r=R=0.065 m

The area of the surface is

A=4\pi R^2

And since the electric field is perpendicular to the surface at any point, Gauss Law becomes

E\cdot 4\pi R^2 = \frac{q}{\epsilon_0}

The charge included within the sphere in this case is the charge on the paint layer, therefore

q=-17.0\mu C=-17.0\cdot 10^{-6}C

So, the electric field is:

E=\frac{q}{4\pi \epsilon_0 R^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.065)^2}=-3.62\cdot 10^7 N/C

where the negative sign means the direction of the field is inward, since the charge is negative.

c)

Here we want to calculate the electric field 8.00 cm outside the surface of the paint layer.

Therefore, we have to take a Gaussian sphere of radius:

r=8.00 cm + R = 8.00 + 6.50 = 14.5 cm = 0.145 m

Gauss theorem this time becomes

E\cdot 4\pi r^2 = \frac{q}{\epsilon_0}

And the charge included within the sphere is again the charge on the paint layer,

q=-17.0\mu C=-17.0\cdot 10^{-6}C

Therefore, the electric field is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.145)^2}=-7.27\cdot 10^7 N/C

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
3 years ago
Evidence suggests that there may be _______ momentum and ________ reversal patterns in stock price behavior.
bearhunter [10]

CORRECT ANSWER:

D. short-run; long run

STEP-BY-STEP EXPLANATION:

The whole question from book is

Evidence suggests that there may be _______ momentum and ________ reversal patterns in stock price behavior.

A. short-run; short-run

B. long-run; long-run

C. long-run; short-run

D. short-run; long run

Evidence suggests that there may be <em><u>short-run</u></em> momentum and <em><u>long run </u></em>reversal patterns in stock price behavior.

8 0
3 years ago
Other questions:
  • What two things are needed to create an emission nebula? A) interstellar gas and dust B) hydrogen fusion and helium ionization C
    12·1 answer
  • The image shows a model of the gravitational field around Earth. Which best describes the model?
    12·2 answers
  • P and s waves from an earthquake travel at different speeds, and this difference helps in locating the earthquake âepicenterâ (w
    14·1 answer
  • A cosmic ray electron moves at 7.50×106 m/s perpendicular to the Earth’s magnetic field at an altitude where field strength is 1
    10·1 answer
  • Please help need answer asp
    14·2 answers
  • A car traveling 23 m/s begins to decelerate at a constant rate of 5 m/s^2 . After how many seconds does the car come to a stop?
    5·1 answer
  • Alpha particles are emitted during the radioactive decay of
    5·1 answer
  • Please help
    15·2 answers
  • Consider a bus traveling to the west (negative x direction) that begins to slow down as it approaches a traffic light. Which sta
    8·1 answer
  • An airplane flying at a speed of 130 mi/h (58.1 m/s) and at an altitude of 4.9 km drops a food package. Without a parachute, at
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!