An ice cube would transfer heat to another object whose temperature
is lower than zero°C (32°F).
A block of "dry ice" is sitting there at a temperature of -78°C (-109°F).
An ice cube helps to melt dry ice nice and fast.
If you could find a block of solid nitrogen, its temperature would be
63K (-210°C, -346°F). An ice cube would transfer heat to that baby
so fast that it would instantly boil.
Answer:
Explanation:
Let the velocity be v
Total energy at the bottom
= rotational + linear kinetic energy
= 1/2 Iω² + 1/2 mv² ( I moment of inertia of shell = mr² )
= 1/2 mr²ω² + 1/2 mv² ( v = ω r )
= 1/2 mv² +1/2 mv²
= mv²
mv² = mgh ( conservation of energy )
v² = gh
v = √gh
= √9.8 x 1.8
= 4.2 m /s
Solution :
Given :
M = 0.35 kg

Total mechanical energy = constant
or 
But
and 
Therefore, potential energy at the top = kinetic energy at the bottom


(h = 35 cm = 0.35 m)
= 2.62 m/s
It is the velocity of M just before collision of 'm' at the bottom.
We know that in elastic collision velocity after collision is given by :

here, 
∴ 

= 0.33 m/s
Therefore, velocity after the collision of mass M = 0.33 m/s