There
are five layers of the atmosphere and these are; troposphere, stratosphere,
mesosphere, thermosphere and exosphere. The first layer, troposphere, is where
we are able to do most of our activities. This is where we can see the formation
of clouds, the production of rain, hail, snow and other weather phenomenon.
Also, this layer is where the greatest amount of air pressure because most of
the molecules of air are in this area. Like us, air has also mass and the
pressure is brought down by the earth’s gravity causing an increase in weight
exerted on you as you descend lower into the atmosphere. So, as you enter into
the other layers of atmosphere above the troposphere, the air pressure starts
to decrease. <span>Below the atmosphere
is the hydrosphere. This is where all liquid forms are located. And since the
seawater has a greater mass than air, it has the greatest pressure. </span>
Brownian motion<span> or pedesis is the </span>random motion<span> of particles suspended in a fluid </span>
2.22 m/s. Average speed is Total distance over time it took. 100m/45s = 2.22m/s
Explanation:
(a)
The initial vertical velocity is 13 m/s. At the maximum height, the vertical velocity is 0 m/s.
v = at + v₀
0 = (-9.8) t + 13
t ≈ 1.33 s
(b)
Immediately prior to the explosion, the ball is at the maximum height. Here, the vertical velocity is 0 m/s, and the horizontal velocity is constant at 25 m/s.
v = √(vx² + vy²)
v = √(25² + 0²)
v = 25 m/s
(c)
Momentum is conserved before and after the explosion.
In the x direction:
m vx = ma vax + mb vbx
m (25) = (⅓ m) (0) + (⅔ m) (vbx)
25m = (⅔ m) (vbx)
25 = ⅔ vbx
vbx = 37.5 m/s
And in the y direction:
m vy = ma vay + mb vby
m (0) = (⅓ m) (0) + (⅔ m) (vby)
0 = (⅔ m) (vby)
vby = 0 m/s
Since the vertical velocity hasn't changed, and since Fragment B lands at the same height it was launched from, it will have a vertical velocity equal in magnitude and opposite in direction as its initial velocity.
vy = -13 m/s
And the horizontal velocity will stay constant.
vx = 37.5 m/s
The velocity vector is (37.5 i - 13 j) m/s. The magnitude is:
v = √(vx² + vy²)
v = √(37.5² + (-13)²)
v ≈ 39.7 m/s