<span>The maximum possible efficiency, i.e the efficiency of a Carnot engine , is give by the ratio of the absolute temperatures of hot and cold reservoir.
η_max = 1 - (T_c/T_h)
For this engine:
η_max = 1 - [ (20 +273)K/(600 + 273)K ] = 0.66 = 66%
The actual efficiency of the engine is 30%, i.e.
η = 0.3 ∙ 0.664 = 0.20 = 20 %
On the other hand thermal efficiency is defined as the ratio of work done to the amount of heat absorbed from hot reservoir:
η = W/Q_h
So the heat required from hot reservoir is:
Q_h = W/η = 1000J / 0.20 = 5000J</span>
Explanation:
<em>Given </em>
<em>wavelength </em><em>=</em><em> </em><em>4</em><em> </em><em>m</em>
<em>speed </em><em> </em><em>=</em><em> </em><em>3</em><em>3</em><em>2</em><em> </em><em>m/</em><em>s</em>
<em>frequency </em><em>=</em><em> </em><em>?</em>
<em>We </em><em>know </em><em>we </em><em>have </em><em>the </em><em>formula </em>
<em>wavelength</em><em> </em><em>=</em><em> </em><em>speed </em><em>/</em><em> </em><em>frequency </em>
<em>4</em><em> </em><em>=</em><em> </em><em>3</em><em>3</em><em>2</em><em> </em><em>/</em><em> </em><em>frequency </em>
<em>frequency </em><em>=</em><em> </em><em>3</em><em>3</em><em>2</em><em>/</em><em>4</em>
<em>Therefore </em><em> </em><em>frequency </em><em>is </em><em>8</em><em>3</em><em> </em><em>Hertz </em><em>.</em>
The second one if it’s on edge
Answer:
The volume at the surface is 10.97 L.
Explanation:
Given that,
Volume = 5.5 L
Height = 10 m
Density of sea water= 1025 kg/m³
We need to calculate the pressure at that point
Using formula of pressure

Put the value into the formula


We need to calculate the volume at the surface
Using equation of ideal gas

So, for both condition

Put the value into the formula


Hence, The volume at the surface is 10.97 L.