This reaction is called the electrolysis of water. The balanced reaction is:
2H2O = 2H2 + O2
We are given the amount of O2 produced from the electrolysis reaction. This will be the starting point of our calculation.
50.00 grams O2 ( 1 mol O2 / 32 grams O2) ( 2 mol H2O / 1 mol O2) ( 18.01 g H2O / 1 mol H2O ) = 56.28 g H2O
He proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another.
Attraction between a cation in one element and an anion in the other element
Both products will start to cancel the acidity and how strong the base is if they are mixed. If the acid is stronger than the base then it will be an acidic product and visa versa if the base is stronger than the acid.
Answer:
C₆H₈O₆
Explanation:
First off, the<u> percent of oxygen by mass</u> of vitamin C is:
- 100 - (40.9+4.58) = 54.52 %
<em>Assume we have one mol of vitamin C</em>. Then we would have <em>180 grams</em>, of which:
- 180 * 40.9/100 = 73.62 grams are of Carbon
- 180 * 4.58/100 = 8.224 grams are of Hydrogen
- 180 * 54.52/100 = 98.136 grams are of Oxygen
Now we <u>convert each of those masses to moles</u>, using the <em>elements' respective atomic mass</em>:
- C ⇒ 73.62 g ÷ 12 g/mol = 6.135 mol C ≅ 6 mol C
- H ⇒ 8.224 g ÷ 1 g/mol = 8.224 mol H ≅ 8 mol H
- O ⇒ 98.136 g ÷ 16 g/mol = 6.134 mol O ≅ 6 mol O
So the molecular formula for vitamin C is C₆H₈O₆