Answer:+1/2 and -1/2.
Explanation:the presence of an external magnetic field (B0), two spin states exist, +1/2 and -1/2.
The magnetic moment of the lower energy +1/2 state is aligned with the external field, but that of the higher energy -1/2 spin state is opposed to the external field.
Answer:
Electrons
Explanation:
According to the Valence Shell Electron Pair Repulsion Theory (VSEPR), the geometry of a molecule depends on the number of electron pairs (regions of electron density) on the central atom of the molecule. Electron pairs on the valence shell of the molecule tend to position themselves as far apart in space as possible to minimize repulsion between them. Hence, the orientation of these electron pairs is the ultimate determinant of the observed geometry of a molecule.
Lone pairs of electrons cause more repulsion than bond pairs of electrons on the central atom of a molecule. Hence when the central atom of a molecule contains lone pairs of electrons, the molecular geometry is usually distorted from the expected geometry on the basis of VSEPR theory.
Hence, electrons are the subatomic particles which are responsible for any change in the observed molecular geometry of a molecule.
Answer:
Helium is in group 18 of the periodic table. How is helium different from the other elements in this group? = Helium atoms have 2 valence electrons, while atoms of the other elements in the group all have 8 valence electrons.
An emission spectrum will occur when = An electron releases energy and falls back to a lower energy level.
Explanation:
The lever family and the inclined plane family.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.