Answer:
The coefficient of static friction between the ground and the soles of a runner’s shoes is 0.98. What is the maximum speed in which the runner can accelerate without slipping if they have a mass of 73 kg?
Explanation:
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
Taking specific heat of lead as 0.128 J/gK = c
We have energy of ball at 7.00 meter height = mgh = 
When leads gets heated by a temperature ΔT energy needed = mcΔT
=
ΔT
Comparing both the equations
=
ΔT
ΔT = 0.536 K
Change in temperature same in degree and kelvin scale
So ΔT = 0.536 
Answer:
= 3521m/s
The tangential speed is approximately 3500 m/s.
Explanation:
F = m * v² ÷ r
Fg = (G * M * m) ÷ r²
(m v²) / r = (G * M * m) / r²
v² = (G * M) / r
v = √( G * M ÷ r)
G * M = 6.67 * 10⁻¹¹ * 5.97 * 10²⁴ = 3.98199 * 10¹⁴
r = 32000km = 32 * 10⁶ meters
G * M / r = 3.98199 * 10¹⁴ ÷ 32 * 10⁶
v = √1.24 * 10⁷
v = 3521.36m/s
The tangential speed is approximately 3500 m/s.