1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
15

Two flat surfaces are exposed to a uniform, horizontal magnetic field of magnitude 0.47 T. When viewed edge-on, the first surfac

e is tilted at an angle of from the horizontal, and a net magnetic flux of 8.4 103 Wb passes through it. The same net magnetic flux passes through the second surface. (a) Determine the area of the first surface. (b) Find the smallest possible value for the area of the second surface.
Physics
1 answer:
alexgriva [62]3 years ago
7 0

Answer:

a. A = 0.0859 m^2

b. A = 0.0178 m^2

Explanation:

Two flat surfaces are exposed to a uniform, horizontal magnetic field of magnitude 0.47 T. When viewed edge-on, the first surface is tilted at an angle of from the horizontal, and a net magnetic flux of 8.4 103 Wb passes through it. The same net magnetic flux passes through the second surface. (a) Determine the area of the first surface. (b) Find the smallest possible value for the area of the second surface.

take note that the question has not specified th angle which the surface is tilted so i assume the angle is at 12^{0} to the horizontal

flux = BAcos(\alpha)

B=magnetic flux in Weber

A=area of the flat surface in m^2

\alpha=the angle to the horizontal

a) 8.4 x10^-3= (.47)Acos(78)

alpha has to be the angle from the normal and not the horizontal so 90-12=78,

 8.4 x10^-3

/(.47)cos(78)

A = 0.0859 m^2

b) If flux remains the same then for it to be the smallest possible area it needs to be perpendicular to the magnetic field so alpha would be 0.

8.4 x10^-3 = (.47)Acos(0)

A = 0.0178 m^2

You might be interested in
Where must an object be placed to form an image 30.0 cm from a diverging lens with a focal length of 43.0 cm?
Schach [20]
Using lens equation;

1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)

Substituting;

1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm

Therefore, the object should be place 99.23 cm from the lens.
6 0
3 years ago
A motorbike reaches a speed of 20 m/s over 60m, whilst
Fynjy0 [20]

Initial speed = 2√10 m/s

<h3>Further explanation  </h3>

Linear motion consists of 2: constant velocity motion with constant velocity and uniformly accelerated motion with constant acceleration  

An equation of uniformly accelerated motion  

V = vo + at  

Vt² = vo² + 2a (x-xo)  

x = distance on t  

vo / vi = initial speed  

vt / vf = speed on t / final speed  

a = acceleration  

vf=20 m/s

d = 60 m

a = 3 m/s²

\tt vf^2=vi^2+2.ad\\\\20^2=vi^2+2\times 3\times 60\\\\400=vi^2+360\\\\40=vi^2\\\\vi=\sqrt{40}=2\sqrt{10}~m/s

7 0
3 years ago
A tank initially holds 100 gallons of salt solution in which 50 lbs of salt has been dissolved. A pipe fills the tank with brine
olga_2 [115]

Answer:

A. 171.24 Ibs

Explanation:

To find the amount of salt in the tank,

Let Q = Amount of salt in the mixture

And let 100 + (3-2)t = 100 + t be the volume of mixture at anytime t.

Rate of gain - Rate of loss = dQ / dt

Concentration of salt = Q / (100+t)

For the linear differential equation,

dQ / dt = 3(2) - 2 [Q/ (100 + t)]

dQ /dt + Q [2 / (100 + t)] = 6

The general solution of the linear differential equation is:

Q (i.f) = ∫ A(t) (i.f) dt + C

Therefore,

i.f = e ^ ∫ P(t) dt

And P(t) = 2 / (100 + t)

i.f = e ^ ∫ 2 / (100 + t)

  = e ^ 2㏑ (100 + t)

     = e ^ ㏑ (100 + t) ^2 = (100 + t) ^2

Q(100 + t) ^ 2 = ∫6 (100 + t) ^2 dt + C

 Q(100 + t) ^2 = 2(100 + t) ^ 3 + C

  When t = 0, Q = 50

Therefore,

50( 100) ^2 = 2(100) ^3 + C

 C = -1.5 * 10 ^6

therefore, when t = 30,

Q (100 + 30) ^2 = 2(100 + 30) ^3 - 1.5 * 10 ^6

 Q (400) ^2 = 2(130) ^3 - 1.5 * 10 ^6

    Q = 171.24 Ibs

7 0
3 years ago
Saturated ethylene glycol at 1 atm is heated by a horizontal chromiumplated surface which has a diameter of 200 mm and is mainta
Paha777 [63]

Here is the full question.

Saturated ethylene glycol at 1 atm is heated by a chromium-plated surface which is circular in shape and has a diameter of 200-mm and is maintained at 480 K.  

At 470 K the properties of the saturated liquid are mu = 0.38 * 10-3 N. s/m^2, Cp = 3280 J/kg. K and Pr = 8.7. The saturated vapour density is p= 1.66 kg/m^3. Take the liquid to surface constants to be Cnb = 0.010 and m=4.1.  

Estimate the heating power requirement and the rate of evaporation  

What fraction is the power requirement of the maximum power associated with the critical heat flux

Answer:

The heating power requirement = 559.2 W

The rate of evaporation = 6.89*10^{-4}kg/s

The fraction of the power requirement  of operating heat flux to the maximum power associated with the critical heat flux is = 0.026

Explanation:

From the thermodynamics tables; we deduced the value for enthalpy at the pressure 1 atm and T_{sat} = 470 K   for the saturated ethylene glycol.

Value for enthalpy of formation h_{fg} = 812 kJ/kg

Density of saturated ethylene glycol \rho___l = 1111 kg/m³

Surface tension \sigma = 32.7*10^{-3}N/m

The heat flux can be calculated by using the formula:

q"s = \mu___l}}}h_{fg}{[\frac{g(\rho{__l}- \rho{__v} }{\sigma} ]^{1/2}  [\frac{C_p*\delta T_c}{C_{sf}*h_{fg}P_r} ]^3

= [0.38*10^{-3}\frac{NS}{m^2} *812*10^3\frac{J}{kg} (\frac{9.81m/s^2*(1111-1.66)kg/m^3}{32.7*10^{-3}N/m} )^{1/2}*(\frac{3280J/kg.K(480-470)K}{0.01*812*10^3\frac{J}{kg}*(8.7)^1 } )]

= 308.56 × 576.6 × 0.1

= 1.78 × 10⁴ W/m²

Now; to find the heating power requirement; we have:

q_{boil} = q__s }*A S

= 1.78*10^4 \frac{W}{m^2}*(\frac{\pi}{4}*(0.2m))^2

Thus, the heating power requirement = 559.2 W

The rate of evaporation is given as:

m= \frac{q_{boil}}{h_[fg}}

= \frac{559.2}{812*10^3}

= 6.89*10^{-4}kg/s

Thus, the rate of evaporation = 6.89*10^{-4}kg/s

To determine to what fraction in the power requirement of the maximum power is associated with the critical total flux ; we needed to first calculate the critical heat flux.

So, the  calculation for the critical heat is given as:q"max = 0.149*h_{fg}}* \rho{___l}}}}[ \frac{\sigma_g (\rho_l - \rho_v}{\rho_v^2} ]^{1/4}

= q"max = 0.149*812810^3* 1.66[ \frac{32.7*10^{-3}*9.8 (1111- 1.66}{1.66^2} ]^{1/4}

= 200840.08 × 3.37

= 6.77 × 10⁵ W/m²

Finally, the fraction of the power requirement  of operating heat flux to the maximum power associated with the critical heat flux is as follows:

= \frac{q''s}{q''max}

= \frac{1.78*10^4}{6.77*10^5}

= 0.026

Thus, the fraction of the power requirement  of operating heat flux to the maximum power associated with the critical heat flux is = 0.026

7 0
3 years ago
What is the formula for a progressive wave.​
AysviL [449]

Answer:

this is what I found, hope it helps!

4 0
3 years ago
Other questions:
  • Technician a says that the water pump is a centripetal pump. technician b says that centripetal force is the outward force that
    13·1 answer
  • Under most conditions, except ________ change, the resistance of an object is a constant and does not depend on the amount of th
    11·1 answer
  • A train accelerates at -1.5 m/s2 for 10 seconds. If the train had an initial
    10·1 answer
  • What is the Real anti virus software?
    15·2 answers
  • What is the definition for scientific model?​
    9·2 answers
  • What is the definition of power ? what are the units of power?​
    15·1 answer
  • Which is TRUE about static electricity?
    12·2 answers
  • HELP PLS! :/
    6·1 answer
  • Please help me I’ll mark you as Brainly <br><br><br> PLSSSS
    12·2 answers
  • Most people can throw a baseball farther than a bowling ball, and most people would find it less painful to catch a flying baseb
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!