Answer:
1. 6.116x1024 Molecules of H2O
2. 13400 L
3. 8.001x1024 Molecules of Mg3(PO4)2
4. 572 g.
5. 1.017x1025 Molecules of N2
6. 7.24 g
.7. 6980 g. of Al(OH)3
8. 3H2 + N2 => 2NH3
9. S8 + 8O2 => 8SO2
10. Ni(ClO3)2→ NiCl2 + 3O2
11. C2H4 + 3O2→ 2CO2 + 2H2O
12. 2KClO3→ 2KCl + 3O2
13. Cu(OH)2 + 2HC2H3O2→ Cu(C2H3O2)2 + 2H2O
14. C3H8 + 5O2→ 3CO2 + 4H2O
15. 191 g of CO
Answer:
a) 231.9 °C
b) 100% Sn
c) 327.5 °C
d) 100% Pb
Explanation:
This is a mixture of two solids with different fusion point:


<u>Given that Sn has a lower fusion temperature it will start to melt first at that temperature. </u>
So the first liquid phase forms at 231.9 °C and because Pb starts melting at a higher temperature, that phase's composition will be 100% Sn.
The mixture will be completely melted when you are a the higher melting temperature of all components (in this case Pb), so it will all in liquid phase at 327.5 °C.
At that temperature all Sn was already in liquid state and, therefore, the last solid's composition will be 100% Pb.
Answer:
B.red
Explanation:
Electromagnetic spectrum is range of the frequencies and their respective wavelengths of the various type of the electromagnetic radiation.
In order of the decreasing wavelength the spectrum are:
Red , Orange, Yellow, Green, Blue, Indigo, Violet
Increasing wavelength is the opposite trend. Thus, The longest visible wavelength is red and the shortest is violet.
Also, Violet light gets scattered the most while the red light gets scattered the least.
During the time of the sunset, the Earth is rotating away from the Sun. Thus, most of the light colors scatters in the ways and the color that least scatter which is red reaches the Earth.
That's why, at the time of sunrise and sunset, the sky looks red.
Chemical properties
The process of changing into different substances is known as a chemical change and a substance exhibits its chemical properties during such a change.
Answer:
The final pressure is approximately 0.78 atm
Explanation:
The original temperature of the gas, T₁ = 263.0 K
The final temperature of the gas, T₂ = 298.0 K
The original volume of the gas, V₁ = 24.0 liters
The final volume of the gas, V₂ = 35.0 liters
The original pressure of the gas, P₁ = 1.00 atm
Let P₂ represent the final pressure, we get;



∴ The final pressure P₂ ≈ 0.78 atm.