Answer:
1.42 M
Explanation:
First calculate the amount of moles.
that's done by dividing the mass with the molecular mass so 660g / 310.18 g/mol = 2.13 mol
Then you can calculate the molarity by dividing the moles with the volume so 2.13 mol / 1.5 l = 1.42 M
(without rounding: 1.418531175 M)
The combined gas law equation has been
.
The combined gas law has been assigned to the ideal gas. It has been stating that ideal gas are having negligible inter-molecular attraction and collision resulting in the absence of pressure and volume from the particles.
In an ideal gas the equation has been given as:

Where, <em>P </em>has been the pressure of the gas
<em>V </em>has been the volume of the gas
<em>n </em>has been the moles of the gas
<em>R </em>has been a constant
<em>T </em>has been the temperature of the gas
The combined gas law has been given as the change in the pressure, and volume for a gas. It has been given as:

For more information about combined gas law, refer to the link:
brainly.com/question/13154969
Answer:
Ei
Explanation:
De acordo com a teoria de Arrhenius, os ácidos são os compostos que se dissociam no meio aquoso para gerar os íons hidrogênio H + no meio aquoso.
Answer:
1.5055×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Number of mole CO₂ = 2.5 moles
Number of molecules CO₂ =?
The number of molecules present in 2.5 moles CO₂ can be obtained as:
From Avogadro's hypothesis,
1 mole of CO₂ = 6.022×10²³ molecules
Therefore,
2.5 mole of CO₂ = 2.5 × 6.022×10²³
2.5 mole of CO₂ = 1.5055×10²⁴ molecules
Thus, 1.5055×10²⁴ molecules are present in 2.5 moles CO₂