The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
Answer:
1. Nonmetals.
2. Likely to form anions (except the noble gases).
3. All of these
4. Easily reduced (except the noble gases).
Explanation:
Elements with high electronegativities are found towards the upper right corner of the Periodic Table. Thus, they have all the above properties.
Answer:

Explanation:
The given reactions are:
PbCl2(aq)⇌Pb2+(aq)+2Cl−(aq) 
AgCl(aq)⇌Ag+(aq)+Cl−(aq) 
Required reaction is:
PbCl2(aq)+2Ag+(aq)⇌2AgCl(aq)+Pb2+(aq)

The greeks were first to use the term atom by the scientist Democritus which he defined as an indivisible and the simplest part of a substance. Neutron was discoverred by the scientist Chadwick, proton was discovered by Sir Ernest Rutherford.For this problem, answer is A.