The answer is "<span>An atomic nucleus is positively charged because it is composed of protons". An atomic nucleus actually contains nucleons which are made up of both protons and neutrons. Since neutrons are neutral or have no charge, the charge of an atomic nucleus mainly relies on the positive charge of the protons.</span>
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
Seismic waves hope this helps.
Answer:
The atomic mass of the boron atom would be <em>10.135</em>
Explanation:
This is generally known as relative atomic mass.
Relative atomic mass or atomic weight is a physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass of 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative and does not have a unit.
<em>Note that the relative atomic mass of atoms is not always a whole number because of it being isotopic in nature.</em>
- <em>Divide each abundance by 100 then multiply by atomic mass</em>
- <em>Do that for each isotope, then add the two result. Thus</em>
Relative atomic mass of Boron = (18.5/100 x 11) + (81/100 x 10)
= 2.035 + 8.1
= 10.135