Answer:
The value of y = 5.1478
Explanation:
The linear equation is an equation obtained when a linear polynomial is equated to zero. When the solution obtained on solving the equation is substituted in the equation in place of the unknown, the equation gets satisfied.
The given equation: 5.3 x 10- (y)(2y) = 0
⇒ 53 - 2y² = 0
⇒ 2y² = 53
⇒ y² = 53 ÷ 2 = 26.5
⇒ y = √26.5 = 5.1478
Colorimetric methods of analysis make use of Color changes in reagents to decipher the concentration of solutions.
Therefore, color completes the sentence
<h3>Colourimetric analysis</h3>
Generally, Colorimetric analysis is used to know the concentration of a chemical element in a solution while using colour indicators or reagents.
Therefore
Colorimetric methods of analysis are based on having a reagent that changes Color as a function of the concentration of the analyte.
Color
For more information on Compound
brainly.com/question/704297
<h3>
Answer:</h3>
0.90J/g°C
<h3>
Explanation:</h3>
We are given:
Mass of Aluminium = 10 g
Quantity of heat = 677 Joules
Change in temperature = 125°C - 50°C
= 75°C
We are required to calculate the specific heat capacity of Aluminium
But, Quantity of heat = Mass × specific heat × Change in temperature
Q = mcΔt
Rearranging the formula;
c = Q ÷ mΔt
= 677 J ÷ (10 g × 75°C)
= 677 J ÷ 750g°C
= 0.903 J/g°C
= 0.90J/g°C
Thus, the specific heat capacity of Aluminium is 0.90J/g°C
Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon).
Explanation: pls mark brainliest :))
I will list them from alkaline with the lowest boiling point and alkaline with the highest.
1. C2H6
2. C9H20
3. C11H24
4. C16H34
5. C20H42
6. C32H66
7. C150H302
I have taken a quiz similar to this before and can assure you this is correct and is primarily because of the number of Carbons and Hydrogens within this. More Carbons and Hydrogens causes Boiling Points to increase because of stronger bonds.