The piece of unknown metal is in thermal equilibrium with water such that Q of metal is equal to Q of the water. We write this equality as follows:
-Qm = Qw
Mass of metal (Cm)(ΔT) = Mass of water (Cw) (ΔT)
where C is the specific heat capacities of the materials.
We calculate as follows:
-(Mass of metal (Cm)(ΔT)) = Mass of water (Cw) (ΔT)
-68.6 (Cm)(52.1 - 100) = 42 (4.184) (52.1 - 20)
Cm = 1.717 -----> OPTION C
Answer:
2. 14
Explanation:
To form Br₂ bond, a total of 14 electrons are needed.
Bromine is an element in the 7th group on the periodic table. It has 7 valence electrons.
- In forming the bromine gas, the two atoms of bromine shares 7 electrons each.
- These electrons are from their outermost shell.
- The outermost shell is the valence shell.
- So, two atoms donating 7 electrons gives 14 electrons.
Hello!
Like many other elements in chemistry, when an atom's valence shell is filled the element becomes stable. Through the octet rule we know that when the very last valence shell becomes filled, the atom is stable and therefore it is highly unlikely for the element to form bonds with that of another.
I hope this helped!
Answer:
3.01 × 10²³ atoms Ne
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
[Given] 10.1 g Ne
[Solve] atoms Ne
<u>Step 2: Identify Conversions</u>
Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
[PT] Molar Mass of Ne: 20.18 g/mol\
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.01398 × 10²³ atoms Ne ≈ 3.01 × 10²³ atoms Ne