1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
11

Find the de Broglie wavelength lambda for an electron moving at a speed of 1.00 \times 10^6 \; {\rm m/s}. (Note that this speed

is low enough that the classical momentum formula p=mv is still valid.) Recall that the mass of an electron is m_{\rm e} = 9.11\times 10^{-31}\; {\rm kg}, and Planck's constant is h = 6.626 \times 10^{-34}\; {\rm J \cdot s}.
Express your answer in meters to three significant figures.
lambda =7.270×10−10 \rm m

Part B

Find the de Broglie wavelength lambda of a baseball pitched at a speed of 40.0 m/s. Assume that the mass of the baseball is 0.143 \;{\rm kg}.
Express your answer in meters to three significant figures

lambda =1.16×10−34 \rm m


As a comparison, an atomic nucleus has a diameter of around 10^{-14}\;{\rm m}. Clearly, the wavelength of a moving baseball is too small for you to hope to see diffraction or interference effects during a baseball game.

Part C

Consider a beam of electrons in a vacuum, passing through a very narrow slit of width 2.00 \;\mu{\rm m}. The electrons then head toward an array of detectors a distance 1.091 m away. These detectors indicate a diffraction pattern, with a broad maximum of electron intensity (i.e., the number of electrons received in a certain area over a certain period of time) with minima of electron intensity on either side, spaced 0.492 cm from the center of the pattern. What is the wavelength lambda of one of the electrons in this beam? Recall that the location of the first intensity minima in a single slit diffraction pattern for light is y=L \lambda /a, where L is the distance to the screen (detector) and a is the width of the slit. The derivation of this formula was based entirely upon the wave nature of light, so by de Broglie's hypothesis it will also apply to the case of electron waves.

Express your answer in meters to three significant figures.

lambda =9.02×10−9 \rm m

Part D

What is the momentum p of one of these electrons?
Express your answer in kilogram-meters per second to three significant figures.
Chemistry
1 answer:
masya89 [10]3 years ago
7 0

(A) 7.28\cdot 10^{-10} m

The De Broglie wavelength of an electron is given by

\lambda=\frac{h}{p} (1)

where

h is the Planck constant

p is the momentum of the electron

The electron in this problem has a speed of

v=1.00\cdot 10^6 m/s

and its mass is

m=9.11\cdot 10^{-31} kg

So, its momentum is

p=mv=(9.11\cdot 10^{-31} kg)(1.00\cdot 10^6 m/s)=9.11\cdot 10^{-25}kg m/s

And substituting into (1), we find its De Broglie wavelength

\lambda=\frac{6.63\cdot 10^{-34}Js}{9.11\cdot 10^{-25} kg m/s}=7.28\cdot 10^{-10} m

(B) 1.16\cdot 10^{-34}m

In this case we have:

m = 0.143 kg is the mass of the ball

v = 40.0 m/s is the speed of the ball

So, the momentum of the ball is

p=mv=(0.143 kg)(40.0 m/s)=5.72 kg m/s

And so, the De Broglie wavelength of the ball is given by

\lambda=\frac{h}{p}=\frac{6.63\cdot 10^{-34} Js}{5.72 kg m/s}=1.16\cdot 10^{-34}m

(C) 9.02\cdot 10^{-9}m

The location of the first intensity minima is given by

y=\frac{L\lambda}{a}

where in this case we have

y=0.492 cm = 4.92\cdot 10^{-3} m

L = 1.091 is the distance between the detector and the slit

a=2.00\mu m=2.00\cdot 10^{-6}m is the width of the slit

Solving the formula for \lambda, we find the wavelength of the electrons in the beam:

\lambda=\frac{ya}{L}=\frac{(4.92\cdot 10^{-3}m)(2.00\cdot 10^{-6} m)}{1.091 m}=9.02\cdot 10^{-9}m

(D) 7.35\cdot 10^{-26}kg m/s

The momentum of one of these electrons can be found by re-arranging the formula of the De Broglie wavelength:

p=\frac{h}{\lambda}

where here we have

\lambda=9.02\cdot 10^{-9}m is the wavelength

Substituting into the formula, we find

p=\frac{6.63\cdot 10^{-34}Js}{9.02\cdot 10^{-9}m}=7.35\cdot 10^{-26}kg m/s

You might be interested in
An unsaturated solution is formed when 80 grams of a salt is dissolved in 100 grams of water at 40. This salt could be ?
LekaFEV [45]
A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate  80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
7 0
3 years ago
Read 2 more answers
Convert -32 F into K
Afina-wow [57]

Answer:

-32 Fahrenheit converts to 237.594 Kelvin

4 0
3 years ago
What is the Noble Gas Configuration for Europium?
12345 [234]
Is this a real question? It’s B
6 0
3 years ago
The diagram shows different forms of thermal energy transfer.
omeli [17]
A. conduction
that is the correct answer
6 0
3 years ago
Read 2 more answers
What are the 2 types of electrical charge?​
BlackZzzverrR [31]

Answer: Electric charges are of two general types: positive and negative.

Hope this helps... Stay safe and have a great day.... :D

7 0
3 years ago
Other questions:
  • A solution of AgNO3 contains 29.66 g of solute in 100.0 mL of solution. What is the molarity of the solution
    10·1 answer
  • Describe the difference between an independent and dependent valuable?
    5·1 answer
  • What is the classification of a solution of naoh with a ph of 8.3?
    12·1 answer
  • What is a layer of solid of the solid earth<br>​
    9·1 answer
  • What form does carbon take inside a tree?
    6·2 answers
  • The label on a box of granola indicates that it contains 13 grams of added sugars, and 240 Calories per serving. What percent of
    15·1 answer
  • What is the charge of an atom after it gains an electron during the formation of a bond?
    13·1 answer
  • How many moles of calcium atoms are in 77.4g of Ca?
    7·1 answer
  • Jan drew a diagram to compare centipedes and millipedes.
    5·2 answers
  • Convert 3.30 g of copper (II) hydroxide Cu(OH)2 to molecules.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!