(A) ![7.28\cdot 10^{-10} m](https://tex.z-dn.net/?f=7.28%5Ccdot%2010%5E%7B-10%7D%20m)
The De Broglie wavelength of an electron is given by
(1)
where
h is the Planck constant
p is the momentum of the electron
The electron in this problem has a speed of
![v=1.00\cdot 10^6 m/s](https://tex.z-dn.net/?f=v%3D1.00%5Ccdot%2010%5E6%20m%2Fs)
and its mass is
![m=9.11\cdot 10^{-31} kg](https://tex.z-dn.net/?f=m%3D9.11%5Ccdot%2010%5E%7B-31%7D%20kg)
So, its momentum is
![p=mv=(9.11\cdot 10^{-31} kg)(1.00\cdot 10^6 m/s)=9.11\cdot 10^{-25}kg m/s](https://tex.z-dn.net/?f=p%3Dmv%3D%289.11%5Ccdot%2010%5E%7B-31%7D%20kg%29%281.00%5Ccdot%2010%5E6%20m%2Fs%29%3D9.11%5Ccdot%2010%5E%7B-25%7Dkg%20m%2Fs)
And substituting into (1), we find its De Broglie wavelength
![\lambda=\frac{6.63\cdot 10^{-34}Js}{9.11\cdot 10^{-25} kg m/s}=7.28\cdot 10^{-10} m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B6.63%5Ccdot%2010%5E%7B-34%7DJs%7D%7B9.11%5Ccdot%2010%5E%7B-25%7D%20kg%20m%2Fs%7D%3D7.28%5Ccdot%2010%5E%7B-10%7D%20m)
(B) ![1.16\cdot 10^{-34}m](https://tex.z-dn.net/?f=1.16%5Ccdot%2010%5E%7B-34%7Dm)
In this case we have:
m = 0.143 kg is the mass of the ball
v = 40.0 m/s is the speed of the ball
So, the momentum of the ball is
![p=mv=(0.143 kg)(40.0 m/s)=5.72 kg m/s](https://tex.z-dn.net/?f=p%3Dmv%3D%280.143%20kg%29%2840.0%20m%2Fs%29%3D5.72%20kg%20m%2Fs)
And so, the De Broglie wavelength of the ball is given by
![\lambda=\frac{h}{p}=\frac{6.63\cdot 10^{-34} Js}{5.72 kg m/s}=1.16\cdot 10^{-34}m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7Bh%7D%7Bp%7D%3D%5Cfrac%7B6.63%5Ccdot%2010%5E%7B-34%7D%20Js%7D%7B5.72%20kg%20m%2Fs%7D%3D1.16%5Ccdot%2010%5E%7B-34%7Dm)
(C) ![9.02\cdot 10^{-9}m](https://tex.z-dn.net/?f=9.02%5Ccdot%2010%5E%7B-9%7Dm)
The location of the first intensity minima is given by
![y=\frac{L\lambda}{a}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7BL%5Clambda%7D%7Ba%7D)
where in this case we have
![y=0.492 cm = 4.92\cdot 10^{-3} m](https://tex.z-dn.net/?f=y%3D0.492%20cm%20%3D%204.92%5Ccdot%2010%5E%7B-3%7D%20m)
L = 1.091 is the distance between the detector and the slit
is the width of the slit
Solving the formula for
, we find the wavelength of the electrons in the beam:
![\lambda=\frac{ya}{L}=\frac{(4.92\cdot 10^{-3}m)(2.00\cdot 10^{-6} m)}{1.091 m}=9.02\cdot 10^{-9}m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7Bya%7D%7BL%7D%3D%5Cfrac%7B%284.92%5Ccdot%2010%5E%7B-3%7Dm%29%282.00%5Ccdot%2010%5E%7B-6%7D%20m%29%7D%7B1.091%20m%7D%3D9.02%5Ccdot%2010%5E%7B-9%7Dm)
(D) ![7.35\cdot 10^{-26}kg m/s](https://tex.z-dn.net/?f=7.35%5Ccdot%2010%5E%7B-26%7Dkg%20m%2Fs)
The momentum of one of these electrons can be found by re-arranging the formula of the De Broglie wavelength:
![p=\frac{h}{\lambda}](https://tex.z-dn.net/?f=p%3D%5Cfrac%7Bh%7D%7B%5Clambda%7D)
where here we have
is the wavelength
Substituting into the formula, we find
![p=\frac{6.63\cdot 10^{-34}Js}{9.02\cdot 10^{-9}m}=7.35\cdot 10^{-26}kg m/s](https://tex.z-dn.net/?f=p%3D%5Cfrac%7B6.63%5Ccdot%2010%5E%7B-34%7DJs%7D%7B9.02%5Ccdot%2010%5E%7B-9%7Dm%7D%3D7.35%5Ccdot%2010%5E%7B-26%7Dkg%20m%2Fs)