<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
Answer:
The unit is the barn, which is equal to 10-28 m^2 or 10-24 cm^2
Explanation:
The standard unit for measuring a nuclear cross section (denoted as σ)
Answer:
The answer is "
"
Explanation:
The formula for velocity:

