Answer:
The value of change in internal energy of the gas = + 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.
Answer:
The energy output object that works with the turbine is the alternator (generator)
Explanation:
In energy generation the turbine receives input energy from high pressured steam, high energy water etc. Which impinges and turn the blades of the turbine, this turbine is connected by means of a shaft to the alternator that converts the rotational motion of the shaft to electrical energy through Electro magnetic induction principles and also outputs the energy for consumption.
The formula for speed is:
Speed = Distance/Time
We can plug in the given values into the above equation:
Speed = 570m÷24s
Speed = 23.75, which rounds to 24m/s as a whole number. Therefore, the answer is b.
“As temperatures drop, the pavement contracts, building up tensile stresses that lead to cracking,” states MnDOT's Research Services Section. “Fractures occur every 20 to 30 feet across the lane, allowing water to penetrate the structure, which further weakens the pavement layer and the base beneath
The strength of the electric field on the point charge at this distance will be 4000 V/m.
<h3>What is the strength of the electric field?</h3>
The strength of the electric field is the ratio of electric force per unit charge.
The given data in the problem is;
Qis the unit charge = 4.0 × 10⁻⁶ C
E is the strength of the electric field
R is the distance from point charge = 3 m
The strength of the electric field is;
![\rm E = \frac{KQ}{R^2} \\\\ \rm E = \frac{9 \times 10^9 \times 4 \times 10^{-6} \ C}{3^2} \\\\ E= 4000 V/m](https://tex.z-dn.net/?f=%5Crm%20E%20%3D%20%5Cfrac%7BKQ%7D%7BR%5E2%7D%20%5C%5C%5C%5C%20%5Crm%20E%20%3D%20%5Cfrac%7B9%20%5Ctimes%2010%5E9%20%5Ctimes%204%20%5Ctimes%2010%5E%7B-6%7D%20%5C%20C%7D%7B3%5E2%7D%20%5C%5C%5C%5C%20E%3D%204000%20V%2Fm)
Hence, the strength of the electric field on the point charge at this distance will be 4000 V/m.
To learn more about the strength of the electric field refer to the link;
brainly.com/question/15170044
#SPJ1