The gravitation acceleration on the moon is different than on Earth. It is 1.6 m/s^2. If you weigh 120 lbs, then you would multiply 120 pounds by the gravitational acceleration on the moon and then divide by the acceleration on Earth.
(120 lbs * 1.6) / 9.8 = 20 pounds.
The mass will always be the same no matter what planet you’re on, so it’s still 54 kg.
Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =

- v = final velocity of the electron
- e = magnitude of charge on an electron =

- p = magnitude of charge on a proton =

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.


Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.
Answer: Water can either increase or decrease the friction between surfaces.
Answer:
The maximum data rate supported by this line is 39900 bps
Explanation:
The maximum data rate supported by this line can be obtained using the formula below
c = W*log2(S/N+1)
where;
c is the maximum data rate supported by the line
W is the bandwidth = 4kHz
S/N+1 is the signal to noise ratio = 1001
c = 4*log2(1001)
c = 39868.9 ≅ 39900 bps
Therefore, the maximum data rate supported by this line is 39900 bps