Answer:
Percentage Yield is given as,
%age Yield = Actual Yield / Theoretical Yield × 100
This shows that the %age yield is directly depending upon the actual yield. And most of the time the percentage yield is less than 100 % because of the following factors.
Impure Starting Materials:
If the starting materials (reactants) are not pure then reaction will not completely form the desired product. Different by products will form which will decrease the %age yield.
Incomplete Reactions:
Not all reactions go to completion. In many reactions the starting material after some time stops forming the product due to different conditions. Some reactions attain equilibrium and stop increasing the amount of product. While, in some reactions a by products (like water) formed often react with the product to give a reverse reactions. Hence, the chemistry of reactions also causes the decrease in %age yield.
Handling:
Another major reason for decrease in yield is handling the product. Always some of the product is lost during the workup of the reaction like, taking TLC, doing solvent extraction, doing column chromatography, taking characterization spectrums. So, we can conclude that the %age yield will always be less than 100%.
Answer:
A)The spring scale has a high level of precision and a low level of accuracy.
Explanation:
Hope it works for u guys
The ionic formula of sodium oxide would be Na20
The energy required to break existing chemical bonds in reactants is called the activation energy.
<h3>What is activation energy?</h3>
Activation energy in chemistry is the energy required to initiate a chemical reaction.
Chemical reactions involve the breaking of chemical bonds in substances called reactants to form new substances called products.
The energy required to break the bond in the existing reactants thus elevating these substances to a state of high activation is known as activation energy.
Therefore, it can be said that energy required to break existing chemical bonds in reactants is called the activation energy.
Learn more about activation energy at: brainly.com/question/11334504
#SPJ1
The answer is (b). As, vanadium is attached to five fluoride atoms, each flouride containing -1 oxidation state, hence five fluoride contains -5, to neutralize, vanadium should have +5 oxidation state.