Answer:
x = 82
Step-by-step explanation:
The bottom angle is the same as the angle next to x + 6
A straight angle is 180 degrees.
You add the given angles: (x + 6) + (x + 10) = 2x + 16
180 = 2x + 16
- 16 -16
164 = 2x
x = 82
The answers to the questions are
- The mathematical model is given as s = −16t2 + 1054
- The height after 4.5 seconds is 730 feet
- the time it would take to strike the ground is 8.11 seconds.
<h3>How to solve for the position of the object</h3>
The mathematical model of this problem would be written as
s = −16t2 + v0t + s0
s0 = 1054
then we would have
s = −16t2 + 1054
b. after 4.5 seconds the height is going to be
s = −16t2 + 1054
= −16(4.5)² + 1054
= -16 * 20.25 + 1054
= 730
C. the time that it takes to strike the ground
s = −16t² + 1054
= 16t² = 1054
t² = 1054/16
= 65.88
t = √65.88
t = 8.11
Hence the time it would take to strike the ground is 8.11 seconds.
Read more on velocity here:
brainly.com/question/4931057
#SPJ1
Remember that the period of a sinusoidal function <span>is the vertical distance between the t-axis and one of the extreme points.</span> From the graph we can infer that the period of the function is 4.5.
Also, the amplitude is<span> the distance between two consecutive maximum or two consecutive minimum points. From the graph we can infer that the amplitude of the function is 0.05 seconds.
We can conclude that the correct answer is: 0.05 seconds; 4.5
</span>
Answer:
la respuesta esta abajo
Step-by-step explanation:
a) Sea x el número del artículo x mientras que y representa el número del artículo y.
Dado que cada cantidad de artículo x requiere 2 horas de trabajo de perforación, mientras que cada cantidad de artículo y requiere 5 horas de trabajo de perforación. Hay un máximo de 40 horas disponibles, por tanto el modelo se da como:
2x + 5y ≤ 40
b) La trama se trazó utilizando la herramienta gráfica en línea de geogebra.
c) Para 10 unidades de X y 5 unidades de y:
2 (10) + 5 (5) = 45> 40
Por lo tanto, esto no sería posible porque requerirá 45 horas de perforación, lo que es más que el máximo de 40 horas disponibles.