Answer:
No, i will not use a water pipe consisting of the two metals
Explanation:
Looking at the reduction potential of the both metals, it is clear that an electrochemical cell is set up with iron as the anode and copper as the cathode.
This will make the iron to quickly corrode and eventually destroy the water pipe. It is better to have a set up in which another metal that is higher than iron in the electrochemical series is combined with it.
Q1)
We have been given the OH⁻ concentration, therefore we first need to find the pOH value and then the pH value.
pOH = -log [OH⁻]
pOH = -log (0.225 M)
pOH = 0.65
pH + pOH = 14
pH = 14 - 0.65 = 13.35
Q2)
pOH = -log[OH⁻]
pOH = -log (0.0015 M)
pOH = 2.82
pH + pOH = 14
pH = 14 - 2.82
pH = 11.18
N = ?
T = 449 K
V = 58.35 L
P =2.97
R = 0.082
Use the clapeyron equation:
P x V = n x R x T
2.97 x 58.35 = n x 0.082 x 449
173.2995 = n x 36.818
n = 173.2995 / 36.818
n = 4.70 moles
hope this helps!
When you have both of these ( The periodic table of elements and the formula of your compound) you are able to calculate the R.M.M ( Relative atomic mass) of that compound.
For example the formula of a NaCl ( Table salt ) has the elemnt Na and Cl.
We look at the atomic mass of both of these compounds
Na - 23
Cl - 35.5
R.M.M = 23 +35.5 = 58.5
Hope this helps :).