Answer:
When 1.20 mole of ammonia reacts, 1.8 moles of water are produced.
Explanation:
The balanced reaction is:
4 NH₃(g) + 5 O₂(g) → 4 NO (g) + 6 H₂O
By stoichiometry of the reaction, the following amounts of moles participate in the reaction:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then you can apply the following rule of three: if by stoichiometry 4 moles of ammonia produce 6 moles of water, 1.2 moles of ammonia will produce how many moles of water?

moles of water= 1.8 moles
<u><em>When 1.20 mole of ammonia reacts, 1.8 moles of water are produced.</em></u>
<u><em></em></u>
Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
... liquid water are two different forms of the same chemical substance, water. A chemical substance is a form of matter that has constant chemical ...
First, calculate for the amount of heat used up for increasing the temperature of ice.
H = mcpdT
H = (18 g)*(2.09 J/g-K)(50 K) = 1881 J
Then, solve for the heat needed to convert the phase of water.
H = (1 mol)(6.01 kJ/mol) = 6.01 kJ = 6010 J
Then, solve for the heat needed to increase again the temperature of water.
H = (18 g)(4.18 J/gK)(70 k)
H = 5266.8 J
The total value is equal to 13157.8 J
Answer: 13157.8 J