Answer:
<em>D. One negative charge</em>
Explanation:
During the formation of a bond, if an atom gains an electron, after that it will be left with a negative charge compared to the atom before the bond is formed. This is because in these types of bonds, which are <em>ionic bonds</em>, there is a <em>transfer of electrons between atoms</em>, there will be one or more atoms that yield electrons that will be captured by another and other atoms that gain them, and the difference of charges produced by this transfer of electrons, will cause the union to occur due to the attraction between electrostatic forces.
If you have a neutral atom before joining, and it gains an electron to form a bond,<em> it will have one electron more than its initial state</em> (in the initial state, the number of protons and electrons is the same, because the atoms they are electrically neutral), so having an extra electron will make it have a negative charge, since there will be a difference between the number of protons and electrons that the atom possesses. <em>This is why the correct answer is D.
</em>
In the case of <em>response A and B</em>, <em>the atom could only remain positively charged if it loses electrons</em>, but as in this case it wins, <em>they are not correct</em>.
<em>The answer C is also not correct</em> because only one electron wins, so that it is left with two negative charges, <em>it should gain two electrons during the bond formation.</em>
The time taken for the isotope to decay is 46 million years.
We'll begin by calculating the number of half-lives that has elapsed. This can be obtained as follow:
- Original amount (N₀) = 50.25 g
- Amount remaining (N) = 16.75
- Number of half-lives (n) =?
2ⁿ = N₀ / N
2ⁿ = N₀ / N
2ⁿ = 50.25 / 16.75
2ⁿ = 3
Take the log of both side
Log 2ⁿ = 3
nLog 2 = Log 3
Divide both side by log 2
n = Log 3 / Log 2
n = 2
Finally, we shall determine the time.
- Half-life (t½) = 23 million years
- Number of half-lives (n) = 2
t = n × t½
t = 2 × 23
t = 46 million years
Learn more about half-life: brainly.com/question/25927447
Sharing of two electrons make a <u>Covalent </u>bond.
<u>Explanation: </u>
Attractions among the atoms bring them together. So the electrons from each of the atoms are attracted towards the nucleus of those two atoms, that “share” the electrons produces a covalent bond.
It is also named as molecular bond, a bond that entails the sharing of a pair of electrons among the atoms. When the atoms share the electrons among themselves, it produces a molecule, which is more stable than the atom.
If the attractions between the atoms are strong enough and if every atom has enough space for the electrons in its outermost energy level then there occurs covalent bonding. So electrons are very important in the covalent bond formation.
Wanted to write more both there is a problem with the editor. Uranium is formed naturally in the crust of rocks and seawater. Plutonium does not occur in nature. It is found in the biosphere.
Explanation:
this is the answer of your question .
hope it helped you