Alkanes are hydrocarbons that only contain single bonds in them. A carbon can bond with up to 4 atoms, even with another carbon atom. So, in a C-C bond, 3 more H atoms can bond to each of the C atom. Generally, the chemical formula for alkanes is CₓH₂ₓ₊₂. So for butane, there are 4 C atoms. The corresponding H atoms are 2(4) + 2 = 10. That's why it's chemical formula is C₄H₁₀.
Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g
Answer:
Π = iMRT ½
Explanation:
111 g
= 0.033 mol
0.033 mol CaCl2
0.09632 kg solvent
= 0.0344 m
13.7 g x 1 mol C3H7OH
60.10 g
0.5 L
(0.0821 L.atm/K.mol) (300.15K
Answer:
Average atomic mass = 79.9034 amu
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
<u>For first isotope:
</u>
% = 50.69 %
Mass = 78.9183 amu
<u>For second isotope:
</u>
% = 49.31 %
Mass = 80.9163 amu
Thus,
<u>Average atomic mass = 79.9034 amu</u>