Answer: False
Explanation: In order to explain this problem we have to use the Faraday law, which say 
dФm/dt=-ε  it means that the variation of the magnetic field flux with time is equal to the emf ( electromotive force). In our case the magnetic flux is constant then there is not a emf induced in a wire closed loop. 
 
        
             
        
        
        
Answer:
(A) FM Radio had a somewhat shorter ranger than AM radio, but better sound quality.
Explanation:
FM Radio was invented in 1933 by Edwin Armstrong who was an American engineer. FM stands for frequency modulation and AM stands for Amplitude Modulation.
FM is used for most broadcasts of music and FM radio stations use a very high-frequency range of radio frequencies. 
In FM Radio, the sound is transmitted through changes in frequency. Both FM and AM radio signals experience frequent change in amplitude, they are far less noticeable on FM.
When switching between stations, FM antenna is alternating between different frequencies, and not amplitudes and this produces a much clearer sound and allows for smoother transitions with little to no audible static.
FM signals can be interfered by barriers and this could affect the signal strength. FM Radio signals are more clearer in a mountainous area that has no barrier. 
AM radio was able to carry signals farther than AM radio. 
 
        
             
        
        
        
Stop lines are solid white lines painted across the traffic lanes at intersections and pedestrian crosswalks, indicating the exact place to stop.
        
             
        
        
        
D) although recent research (1990's) has shown Uranus and Neptune to be ice giants and have heavier substances.
        
             
        
        
        
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.