Answer:
1.21
Explanation:
Heat rise in the body happens due to heat supplied by water to the body.
Heat rise in body = m₁ c₁ ΔT₁
Where m₁ is mass of body and c₁ is its specific heat of body
Heat lost from water to the body = m₂ c₂ ΔT₂
Where m₂ is mass of water and c₂ is its specific heat of water ( c₂ =1 (since water))
Equating both:
15.3 x c₁ x 4.3 = 80.2 x 1 x 4.3
⇒ c₁ = 80.2 / (15.3 x 4.3) = 1.21
Answer:
The angle between the electric field lines and the equipotential surface is 90 degree.
Explanation:
The equipotential surfaces are the surface on which the electric potential is same. The work done in moving a charge from one point to another on an equipotential surface is always zero.
The electric field lines are always perpendicular to the equipotential surface.
As

For equipotential surface, dV = 0 so

The dot product of two non zero vectors is zero, if they are perpendicular to each other.
Sound waves travel around the boxed room causing them to bounce of the nearest walls to the end of the room>
Answer:
26 V
Explanation:
Given:
The three resistors 5.5 V. 8.2 V. and 12,3 V. are connected in series.
Now we have to find out the source voltage to which these resistors arc connected ?
Solution:
As we know in series the magnitude of current is uniform but the voltage divides between the resistors supplied from source voltage.So the magnitude of source voltage is, 5.5 V + 8.2 V + 12.3 V = 26 V
Hence, the value of the source voltage to which these resistors are connected is 26 V
Answer:
System inputs and outputs fluctuate around a stable average so the system does not move far from its average condition.
Explanation:
Steady-state equilibrium can also be called dynamic equilibrium. The main difference between the two is the type of system we are considering. When a system is closed, and it attains equilibrium, there is no transfer of energy. In the case of an open system, even if the system achieves equilibrium there will be some transfer of energy but it will not deviate far from it's equilibrium point, that is, it will be in a steady-state.