Answer:
V = 0.714m/s
Explanation:
Full solution calculation can be found in the attachment below.
From the principle of conservation of linear momentum, the sum of momentum before collision equals the sum of momentum after collision.
Before collision only the train had momentum. After the collision the train and the boxcars stick together and move as one body. The initial momentum of the train is now shared with the boxcars as they move together as one body. The both move with a common velocity v.
See the attachment below for the solution calculation.
Here Power = Voltage * Current
So, Voltage = Power/Current
Put the values,
V = 240/2
V = 120 V
In short, Your Final Answer would be: 120 Volts
Hope this helps!
Answer:
<h2>2.35 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
force = 0.49 × 4.8 = 2.352
We have the final answer as
<h3>2.35 N</h3>
Hope this helps you
Answer: • using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use
Explanation:
The options that will ensure laboratory safety during the experiment will be:
• using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use.
We should note that the beaker tongs are simply used in the holding of the beakers that have hot liquids in them. Also, it s vital for the hot plate to be turned off after its use so as to prevent accident.
Answer:
1/i + 1/o = 1/f thin lens equation
i = 33 * 8.9 / (33 - 8.9) = 12.2 cm to right of first lens
27 - 12.2 = 14.8 cm to left of second lens
i = 14.8 * 8.9 / (14.8 - 8.9) = 22,3 cm to right of second lens