Explanation:
SUPONIENDO QUE LA ACELERACIÓN DE LA GRAVEDAD ES 
USANDO LA SEGUNDA LEY DE NEWTON:
<em>m</em> = 80.0 N/
= 8.16 kg
Answer:
Explanation:
Given:
Steam Mass rate, ms = 1.5 kg/min
= 1.5 kg/min × 1 min/60 sec
= 0.025 kg/s
Air Mass rate, ma = 100 kg/min
= 100 kg/min × 1 min/60 sec
= 1.67 kg/s
A.
Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.
xf, quality = 0.9.
Tsat = 89.9°C
hf = 376.57 kJ/kg
hfg = 2283.38 kJ/kg
Using the equation for specific enthalpy,
hi = hf + (hfg × xf)
= 376.57 + (2283.38 × 0.9)
= 2431.552 kJ/kg
The specific enthalpy of the outlet, h2 = hf
= 376.57 kJ/kg
B.
Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy
= ms × (hi - h2)
= 0.025 × (2431.552 - 376.57)
= 0.025 × 2055.042
= 51.37455 kW
= 51.38 kW.
Answer:
The distance between the two slits is 40.11 μm.
Explanation:
Given that,
Frequency 
Distance of the screen l = 88.0 cm
Position of the third order y =3.10 cm
We need to calculate the wavelength
Using formula of wavelength

where, c = speed of light
f = frequency
Put the value into the formula


We need to calculate the distance between the two slits


Where, m = number of fringe
d = distance between the two slits
Here, 
Put the value into the formula



Hence, The distance between the two slits is 40.11 μm.
Answer:
acceleration...............
Answer:
w = 4,786 rad / s
, f = 0.76176 Hz
Explanation:
For this problem let's use the concept of angular momentum
L = I w
The system is formed by the two discs, during the impact the system remains isolated, we have the forces are internal, this implies that the external torque is zero and the angular momentum is conserved
Initial Before sticking
L₀ = 0 + I₂ w₂
Final after coupling
= (I₁ + I₂) w
The moments of inertia of a disk with an axis of rotation in its center are
I = ½ M R²
How the moment is preserved
L₀ = 
I₂ w₂ = (I₁ + I₂) w
w = w₂ I₂ / (I₁ + I₂)
Let's reduce the units to the SI System
d₁ = 60 cm = 0.60 m
d₂ = 40 cm = 0.40 m
f₂ = 200 min-1 (1 min / 60 s) = 3.33 Hz
Angular velocity and frequency are related.
w₂ = 2 π f₂
w₂ = 2π 3.33
w₂ = 20.94 rad / s
Let's replace
w = w₂ (½ M₂ R₂²) / (½ M₁ R₁² + ½ M₂ R₂²)
w = w₂ M₂ R₂² / (M₁ R₁² + M₂ R₂²)
Let's calculate
w = 20.94 8 0.40² / (12 0.60² + 8 0.40²)
w = 20.94 1.28 / 5.6
w = 4,786 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 4.786 / 2π
f = 0.76176 Hz