Answer:
empty space
Explanation:
Our solar system comprises of the sun as the star, the planets, the dwarf planets, various moons, and plenty of asteroids, comets, and meteoroids. However, the majority part of the solar system consists of a void or empty space. These empty spaces basically composed of planetary dust and gas.
Hence, it can be concluded that Most of our Solar system is composed of "Empty Spaces."
To perform an experiment to determine the force constant of a spring, you will need a stand with a boss and clamp, a spiral spring, a meter rule and different weights.
The setup is arranged as shown in the image attached. The natural length of the spring is first recorded. Different weights are added to the spring one after the other and the extension is recorded.
The weight is now plotted on the vertical axis and the extension is plotted on the horizontal axis. The slope of the graph is the force constant of the spring.
Learn more: brainly.com/question/10991960
Answer with Explanation:
We are given that
Length of wire 1=
Length of wire 2=
Resistivity of copper wire=
Resistivity of aluminum wire=
Wire 1=Copper wire
Wire 2=Aluminum wire
Diameter of both wires are same and resistance of both wires are also same.
We know that
Resistance =
When diameter of wires are same then their cross section area are also same .

When resistance and area are same then the length of wire depend upon the resistivity of wire .
The length of wire is inversely proportional to resistivity.
When resistivity is greater then the length of wire will be short and when the resistivity is small then the length of wire will be large.

Therefore, 
Hence, the length of wire 1 (copper wire) is greater than the length of wire 2 (aluminum).


Answer:
The right solution is "126 Psi".
Explanation:
The given values are:
P₁ = 130 psig
i.e.,
= 
= 
or,
= 
Z₂ = 10ft
= 3.05 m
= 1000 kg/m³
According to the question,
Z₁ = 0
V₁ = V₂
As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
i.e.,
⇒ 
⇒ 
Answer:
The elastic potential energy of the spring change during this process is 21.6 J.
Explanation:
Given that,
Spring constant of the spring, 
It extends 6 cm away from its equilibrium position.
We need to find the elastic potential energy of the spring change during this process. The elastic potential energy of the spring is given by the formula as follows :

So, the elastic potential energy of the spring change during this process is 21.6 J.