Good afternoon!
the answer to that particular question is this
rule
a particular pitch directly corresponds to frequency in that if you have a pitch you will have a high frequency
if you a low frequency you will have a low pitch
both are intertwined in marriage!
Answer:

Explanation:
Recall the formula for acceleration:
, where
is final velocity,
is initial velocity, and
is elapsed time (change in velocity over this amount of time).
Let's look at our time vs velocity graph. At t=0 seconds, V=25 m/s. So her initial velocity is 25 m/s.
We want to find the acceleration during the first 5 seconds of motion. Well, looking at our graph, at t=5 seconds, isn't our velocity still 25 m/s? Therefore, final velocity is 25 m/s (for this period of 5 seconds).
We are only looking from t=0 seconds to t=5 seconds which is a total period of 5 seconds. Therefore, elapsed time is 5 seconds.
Substituting values in our formula, we have:

Alternative:
Without even worrying about plugging in numbers, let's think about what acceleration actually is! Acceleration is the change in velocity over a certain period of time. If we are not changing our velocity at all, we aren't accelerating! In the graph, we can see that we have a straight line from t=0 seconds to t=5 seconds, the interval we are worried about. This indicates that our velocity is staying the same! At t=0 seconds, we have a velocity of 25 m/s and that velocity stays the same until t=5 seconds. Even though we are moving, we haven't changed velocity, which means our average acceleration is zero!
The relationships can best be described as follows:
As frequency increases, wavelength decreases. <span>The greater the </span>energy<span>, the larger the frequency </span>and<span> the shorter (smaller) the </span>wavelength<span>. </span>
<span>a) wavelength vs. frequency = inversely proportional
b) wavelength vs. energy = inversely proportional
c) frequency vs. energy = directly proportional
Hope this answers the questions. Have a nice day. Feel free to ask more questions.</span>
Answer:
Tangential speed=5.4 m/s
Radial acceleration=
Explanation:
We are given that
Angular speed=2.59 rev/s
We know that
1 revolution=
2.59 rev=
By using 
Angular velocity=
Distance from axis=r=0.329 m
Tangential speed=
Radial acceleration=
Radial acceleration=
I don’t know what your talking about. ?!?!?!?